使用监督机器学习方法预测脉管炎性神经病变

Zecai Chen
{"title":"使用监督机器学习方法预测脉管炎性神经病变","authors":"Zecai Chen","doi":"10.47813/2782-5280-2024-3-1-0301-0310","DOIUrl":null,"url":null,"abstract":"Vasculitic neuropathy is an inflammation-driven nerve condition that often goes undiagnosed until irreversible damage occurs. This study developed and validated a supervised machine learning model to predict future onset of vasculitic neuropathy using electronic health record data from 450 cases and 1,800 matched controls. The predictive algorithm analyzed 134 structured features related to diagnoses, medications, lab tests and clinical notes. Selected logistic regression model with L2 regularization achieved an AUC of 0.92 (0.89-0.94 CI) internally, and maintained an AUC of 0.90 (0.84-0.93 CI) in the temporal validation cohort. At peak operating threshold, external sensitivity was 0.81 and specificity 0.79. Among highest risk decile, positive predictive value reached 47%. Key features driving predictions included inflammatory markers, neuropathic symptoms and vascular imaging patterns. This methodology demonstrates feasibility of leveraging machine learning for early detection of impending vasculitic neuropathy prior to confirmatory biopsy to enable prompt treatment and improved outcomes.","PeriodicalId":509015,"journal":{"name":"Информатика. Экономика. Управление - Informatics. Economics. Management","volume":"26 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of vasculitic neuropathy using supervised machine learning approaches\",\"authors\":\"Zecai Chen\",\"doi\":\"10.47813/2782-5280-2024-3-1-0301-0310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vasculitic neuropathy is an inflammation-driven nerve condition that often goes undiagnosed until irreversible damage occurs. This study developed and validated a supervised machine learning model to predict future onset of vasculitic neuropathy using electronic health record data from 450 cases and 1,800 matched controls. The predictive algorithm analyzed 134 structured features related to diagnoses, medications, lab tests and clinical notes. Selected logistic regression model with L2 regularization achieved an AUC of 0.92 (0.89-0.94 CI) internally, and maintained an AUC of 0.90 (0.84-0.93 CI) in the temporal validation cohort. At peak operating threshold, external sensitivity was 0.81 and specificity 0.79. Among highest risk decile, positive predictive value reached 47%. Key features driving predictions included inflammatory markers, neuropathic symptoms and vascular imaging patterns. This methodology demonstrates feasibility of leveraging machine learning for early detection of impending vasculitic neuropathy prior to confirmatory biopsy to enable prompt treatment and improved outcomes.\",\"PeriodicalId\":509015,\"journal\":{\"name\":\"Информатика. Экономика. Управление - Informatics. Economics. Management\",\"volume\":\"26 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Информатика. Экономика. Управление - Informatics. Economics. Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47813/2782-5280-2024-3-1-0301-0310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Информатика. Экономика. Управление - Informatics. Economics. Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47813/2782-5280-2024-3-1-0301-0310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血管炎性神经病是一种由炎症引起的神经疾病,在发生不可逆转的损害之前往往得不到诊断。这项研究利用 450 例病例和 1800 例匹配对照的电子健康记录数据,开发并验证了一种有监督的机器学习模型,用于预测血管炎性神经病的未来发病情况。预测算法分析了与诊断、用药、实验室检查和临床笔记相关的 134 个结构化特征。选定的带有 L2 正则化的逻辑回归模型在内部的 AUC 为 0.92(0.89-0.94 CI),在时间验证队列中的 AUC 保持在 0.90(0.84-0.93 CI)。在峰值操作阈值时,外部灵敏度为 0.81,特异性为 0.79。在风险最高的十分位数中,阳性预测值达到 47%。推动预测的关键特征包括炎症标记物、神经病理性症状和血管成像模式。这种方法证明了利用机器学习在确诊活检前早期检测即将发生的血管性神经病变的可行性,从而实现及时治疗和改善预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of vasculitic neuropathy using supervised machine learning approaches
Vasculitic neuropathy is an inflammation-driven nerve condition that often goes undiagnosed until irreversible damage occurs. This study developed and validated a supervised machine learning model to predict future onset of vasculitic neuropathy using electronic health record data from 450 cases and 1,800 matched controls. The predictive algorithm analyzed 134 structured features related to diagnoses, medications, lab tests and clinical notes. Selected logistic regression model with L2 regularization achieved an AUC of 0.92 (0.89-0.94 CI) internally, and maintained an AUC of 0.90 (0.84-0.93 CI) in the temporal validation cohort. At peak operating threshold, external sensitivity was 0.81 and specificity 0.79. Among highest risk decile, positive predictive value reached 47%. Key features driving predictions included inflammatory markers, neuropathic symptoms and vascular imaging patterns. This methodology demonstrates feasibility of leveraging machine learning for early detection of impending vasculitic neuropathy prior to confirmatory biopsy to enable prompt treatment and improved outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信