2 阶分数差分方程的最大正则性

IF 0.8 4区 数学 Q2 MATHEMATICS
Jichao Zhang, Shangquan Bu
{"title":"2 阶分数差分方程的最大正则性","authors":"Jichao Zhang, Shangquan Bu","doi":"10.58997/ejde.2024.20","DOIUrl":null,"url":null,"abstract":"In this article, we study the \\(\\ell^p\\)-maximal regularity for the fractional difference equation $$ \\Delta^{\\alpha}u(n)=Tu(n)+f(n), \\quad (n\\in \\mathbb{N}_0). $$ We introduce the notion of \\(\\alpha\\)-resolvent sequence of bounded linear operators defined by the parameters \\(T\\) and \\(\\alpha\\), which gives an explicit representation of the solution. Using Blunck's operator-valued Fourier multipliers theorems on \\(\\ell^p(\\mathbb{Z}; X)\\), we give a characterization of the \\(\\ell^p\\)-maximal regularity for \\(1 < p < \\infty\\) and \\(X\\) is a UMD space.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/20/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal regularity for fractional difference equations of order 2\",\"authors\":\"Jichao Zhang, Shangquan Bu\",\"doi\":\"10.58997/ejde.2024.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the \\\\(\\\\ell^p\\\\)-maximal regularity for the fractional difference equation $$ \\\\Delta^{\\\\alpha}u(n)=Tu(n)+f(n), \\\\quad (n\\\\in \\\\mathbb{N}_0). $$ We introduce the notion of \\\\(\\\\alpha\\\\)-resolvent sequence of bounded linear operators defined by the parameters \\\\(T\\\\) and \\\\(\\\\alpha\\\\), which gives an explicit representation of the solution. Using Blunck's operator-valued Fourier multipliers theorems on \\\\(\\\\ell^p(\\\\mathbb{Z}; X)\\\\), we give a characterization of the \\\\(\\\\ell^p\\\\)-maximal regularity for \\\\(1 < p < \\\\infty\\\\) and \\\\(X\\\\) is a UMD space.\\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/20/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.20\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.20","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了分数差分方程 $$ \Delta^{\alpha}u(n)=Tu(n)+f(n), \quad (nin \mathbb{N}_0) 的 \(ell^p\)-maximal regularity。我们引入了有界线性算子的有界(T)和(alpha)残差序列的概念,它给出了解的明确表示。利用布伦克关于\(\ell^p(\mathbb{Z}; X)\)的算子值傅里叶乘数定理,我们给出了对于\(1 < p < \infty\)和\(X\)是UMD空间的\(ell^p\)-最大正则性的描述。更多信息请参见 https://ejde.math.txstate.edu/Volumes/2024/20/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal regularity for fractional difference equations of order 2
In this article, we study the \(\ell^p\)-maximal regularity for the fractional difference equation $$ \Delta^{\alpha}u(n)=Tu(n)+f(n), \quad (n\in \mathbb{N}_0). $$ We introduce the notion of \(\alpha\)-resolvent sequence of bounded linear operators defined by the parameters \(T\) and \(\alpha\), which gives an explicit representation of the solution. Using Blunck's operator-valued Fourier multipliers theorems on \(\ell^p(\mathbb{Z}; X)\), we give a characterization of the \(\ell^p\)-maximal regularity for \(1 < p < \infty\) and \(X\) is a UMD space. For more information see https://ejde.math.txstate.edu/Volumes/2024/20/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信