{"title":"滤波的渐近萨缪尔函数","authors":"Steven Dale Cutkosky, Smita Praharaj","doi":"10.1007/s40306-024-00523-x","DOIUrl":null,"url":null,"abstract":"<div><p>We extend the asymptotic Samuel function of an ideal to a filtration and show that many of the good properties of this function for an ideal are true for filtrations. There are, however, interesting differences, which we explore. We study the notion of projective equivalence of filtrations and the relation between the asymptotic Samuel function and the multiplicity of a filtration. We further consider the case of discrete valued filtrations and show that they have particularly nice properties.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 1","pages":"61 - 81"},"PeriodicalIF":0.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Asymptotic Samuel Function of a Filtration\",\"authors\":\"Steven Dale Cutkosky, Smita Praharaj\",\"doi\":\"10.1007/s40306-024-00523-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We extend the asymptotic Samuel function of an ideal to a filtration and show that many of the good properties of this function for an ideal are true for filtrations. There are, however, interesting differences, which we explore. We study the notion of projective equivalence of filtrations and the relation between the asymptotic Samuel function and the multiplicity of a filtration. We further consider the case of discrete valued filtrations and show that they have particularly nice properties.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"49 1\",\"pages\":\"61 - 81\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-024-00523-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00523-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We extend the asymptotic Samuel function of an ideal to a filtration and show that many of the good properties of this function for an ideal are true for filtrations. There are, however, interesting differences, which we explore. We study the notion of projective equivalence of filtrations and the relation between the asymptotic Samuel function and the multiplicity of a filtration. We further consider the case of discrete valued filtrations and show that they have particularly nice properties.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.