Hussam Hag Husein, R. Bäumler, B. Lucke, Wahib Sahwan
{"title":"东地中海的黑土:成因与特性","authors":"Hussam Hag Husein, R. Bäumler, B. Lucke, Wahib Sahwan","doi":"10.3390/geographies4010011","DOIUrl":null,"url":null,"abstract":"This study investigates the distribution, morphology, and properties of these soils, focusing on areas such as littoral plains, high hilly areas, and rift depression valleys. Black soils occur in the eastern Mediterranean with a limited distribution, and some of them meet the requirements for black soils according to the INBS (International Network of Black Soils), while others do not. Black soils can be categorized into three types based on their genesis and evolution: calcareous black soils (mainly raw rocky rendzina), hydromorphic black soils, and black soil on basalt. While black soils were found in various bioclimatic stages and parent materials, their presence was notably limited in certain areas, contrary to prior indications. A soil morphology analysis revealed distinct color variations and depths, influenced by the accumulation of organic matter for hydromorphic and calcareous black soils and basaltic parent material for black soils on basalt. A particle size analysis indicated texture variations from clay to loam, with no clear indication of illuviation. A chemical analysis showed alkaline pH levels, except in basalt-derived soils, which exhibited a slight acidity. Hydromorphic black soil is the most important in terms of expansion and agricultural use and is only found in limestone marl deposits and lakes in depressions emerging from Dead Sea rifts under conditions of saturation or poor drainage. These soils have a thick, dark moly horizon and a high organic matter content.","PeriodicalId":505747,"journal":{"name":"Geographies","volume":"13 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black Soils in the Eastern Mediterranean: Genesis and Properties\",\"authors\":\"Hussam Hag Husein, R. Bäumler, B. Lucke, Wahib Sahwan\",\"doi\":\"10.3390/geographies4010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the distribution, morphology, and properties of these soils, focusing on areas such as littoral plains, high hilly areas, and rift depression valleys. Black soils occur in the eastern Mediterranean with a limited distribution, and some of them meet the requirements for black soils according to the INBS (International Network of Black Soils), while others do not. Black soils can be categorized into three types based on their genesis and evolution: calcareous black soils (mainly raw rocky rendzina), hydromorphic black soils, and black soil on basalt. While black soils were found in various bioclimatic stages and parent materials, their presence was notably limited in certain areas, contrary to prior indications. A soil morphology analysis revealed distinct color variations and depths, influenced by the accumulation of organic matter for hydromorphic and calcareous black soils and basaltic parent material for black soils on basalt. A particle size analysis indicated texture variations from clay to loam, with no clear indication of illuviation. A chemical analysis showed alkaline pH levels, except in basalt-derived soils, which exhibited a slight acidity. Hydromorphic black soil is the most important in terms of expansion and agricultural use and is only found in limestone marl deposits and lakes in depressions emerging from Dead Sea rifts under conditions of saturation or poor drainage. These soils have a thick, dark moly horizon and a high organic matter content.\",\"PeriodicalId\":505747,\"journal\":{\"name\":\"Geographies\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geographies4010011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies4010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Black Soils in the Eastern Mediterranean: Genesis and Properties
This study investigates the distribution, morphology, and properties of these soils, focusing on areas such as littoral plains, high hilly areas, and rift depression valleys. Black soils occur in the eastern Mediterranean with a limited distribution, and some of them meet the requirements for black soils according to the INBS (International Network of Black Soils), while others do not. Black soils can be categorized into three types based on their genesis and evolution: calcareous black soils (mainly raw rocky rendzina), hydromorphic black soils, and black soil on basalt. While black soils were found in various bioclimatic stages and parent materials, their presence was notably limited in certain areas, contrary to prior indications. A soil morphology analysis revealed distinct color variations and depths, influenced by the accumulation of organic matter for hydromorphic and calcareous black soils and basaltic parent material for black soils on basalt. A particle size analysis indicated texture variations from clay to loam, with no clear indication of illuviation. A chemical analysis showed alkaline pH levels, except in basalt-derived soils, which exhibited a slight acidity. Hydromorphic black soil is the most important in terms of expansion and agricultural use and is only found in limestone marl deposits and lakes in depressions emerging from Dead Sea rifts under conditions of saturation or poor drainage. These soils have a thick, dark moly horizon and a high organic matter content.