释放机器自动学习的效率:面向教育和商业数据的社会科学元学习动力

TEM Journal Pub Date : 2024-02-27 DOI:10.18421/tem131-82
D. Oreški, Dunja Vušnjić, Nikola Kadoić
{"title":"释放机器自动学习的效率:面向教育和商业数据的社会科学元学习动力","authors":"D. Oreški, Dunja Vušnjić, Nikola Kadoić","doi":"10.18421/tem131-82","DOIUrl":null,"url":null,"abstract":"Automated Machine Learning (AutoML) utilizing meta-learning (M-L) has gained prominence in the scientific community. Current M-L methods necessitate substantial data and computational resources for extracting meta-features encoding data properties. However, the time needed for meta-feature extraction exceeds that for predictions in M-L systems. This article proposes a domain-specific M-L paradigm tailored to social science, aiming to identify universally applicable meta-features in social science data. Investigating domain-specific properties, the study discerned common meta-features across social science domains, facilitating an efficient AutoML strategy with reduced data requirements. Ninety meta-features, clustered into eight groups characterizing social science data, were employed, focusing on education and business domains. An analysis of 46 datasets revealed domain-specific variations in meta-feature values, confirmed by Wilcoxon tests. Notably, certain meta-features exhibited consistency across social science domains, demonstrating potential for cross-domain AutoML adoption. This research introduces a targeted M-L approach, optimizing AutoML efficiency for social science applications by identifying common meta-features across diverse domains.","PeriodicalId":515899,"journal":{"name":"TEM Journal","volume":"74 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Automated Machine Learning Efficiency: Meta-Learning Dynamics in Social Sciences for Education and Business Data\",\"authors\":\"D. Oreški, Dunja Vušnjić, Nikola Kadoić\",\"doi\":\"10.18421/tem131-82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated Machine Learning (AutoML) utilizing meta-learning (M-L) has gained prominence in the scientific community. Current M-L methods necessitate substantial data and computational resources for extracting meta-features encoding data properties. However, the time needed for meta-feature extraction exceeds that for predictions in M-L systems. This article proposes a domain-specific M-L paradigm tailored to social science, aiming to identify universally applicable meta-features in social science data. Investigating domain-specific properties, the study discerned common meta-features across social science domains, facilitating an efficient AutoML strategy with reduced data requirements. Ninety meta-features, clustered into eight groups characterizing social science data, were employed, focusing on education and business domains. An analysis of 46 datasets revealed domain-specific variations in meta-feature values, confirmed by Wilcoxon tests. Notably, certain meta-features exhibited consistency across social science domains, demonstrating potential for cross-domain AutoML adoption. This research introduces a targeted M-L approach, optimizing AutoML efficiency for social science applications by identifying common meta-features across diverse domains.\",\"PeriodicalId\":515899,\"journal\":{\"name\":\"TEM Journal\",\"volume\":\"74 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEM Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18421/tem131-82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEM Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18421/tem131-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用元学习(M-L)的自动机器学习(AutoML)已在科学界占据重要地位。当前的元学习方法需要大量的数据和计算资源来提取编码数据属性的元特征。然而,元特征提取所需的时间超过了 M-L 系统预测所需的时间。本文提出了一种为社会科学量身定制的特定领域 M-L 范式,旨在识别社会科学数据中普遍适用的元特征。通过对特定领域属性的调查,研究发现了社会科学各领域的共同元特征,从而促进了高效的 AutoML 策略,降低了数据要求。研究采用了 90 个元特征,分为 8 组,分别描述社会科学数据的特征,重点关注教育和商业领域。对 46 个数据集的分析表明,元特征值在特定领域存在差异,这一点通过 Wilcoxon 检验得到了证实。值得注意的是,某些元特征在不同的社会科学领域表现出一致性,显示了跨领域采用 AutoML 的潜力。这项研究引入了一种有针对性的 M-L 方法,通过识别不同领域的共同元特征,优化了 AutoML 在社会科学应用中的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking Automated Machine Learning Efficiency: Meta-Learning Dynamics in Social Sciences for Education and Business Data
Automated Machine Learning (AutoML) utilizing meta-learning (M-L) has gained prominence in the scientific community. Current M-L methods necessitate substantial data and computational resources for extracting meta-features encoding data properties. However, the time needed for meta-feature extraction exceeds that for predictions in M-L systems. This article proposes a domain-specific M-L paradigm tailored to social science, aiming to identify universally applicable meta-features in social science data. Investigating domain-specific properties, the study discerned common meta-features across social science domains, facilitating an efficient AutoML strategy with reduced data requirements. Ninety meta-features, clustered into eight groups characterizing social science data, were employed, focusing on education and business domains. An analysis of 46 datasets revealed domain-specific variations in meta-feature values, confirmed by Wilcoxon tests. Notably, certain meta-features exhibited consistency across social science domains, demonstrating potential for cross-domain AutoML adoption. This research introduces a targeted M-L approach, optimizing AutoML efficiency for social science applications by identifying common meta-features across diverse domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信