F. Ouazani, Sofiane Guella, Yassine Khalfi, K. Benouis
{"title":"用全因子设计法估算贝马西德红色染料吸附动态参数的百分比效应","authors":"F. Ouazani, Sofiane Guella, Yassine Khalfi, K. Benouis","doi":"10.2166/wpt.2024.041","DOIUrl":null,"url":null,"abstract":"\n \n In this study, we investigate the removal of Bemacid red dye using brewery waste in a packed bed column. We examined the effects of bed height, inlet flow, and inlet dye concentration on the column dynamics of adsorption. To assess the favorable column dynamics, we analyzed the breakthrough curves (BTCs). We also used the Clark, Thomas, Bed Depth Service Time (BDST), and Adams-Bohart models to determine the kinetic constants of the adsorption column from the obtained results of the dynamic studies curve of the BTCs. Analysis of the BTC studies revealed that both the BTCs time and worn-out time values increased with an increase in bed height and inlet Bemacid red dye dosage but decreased with an increase in the inlet flow rate. The results further showed that Thomas’ model was the most suitable for describing the entire BTCs (R2 > 0.93). Using a full factorial design to estimate the percentage effects of cited dynamic parameters, we found that these parameters accounted for 98% of the adsorption capacity. This methodology for estimation provides crucial information on the effects of parameters and the extent to which the adsorption capacity depends on the studied parameters.","PeriodicalId":510255,"journal":{"name":"Water Practice & Technology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the percentage effects of Bemacid red dye adsorption dynamic parameters using a full factorial design approach\",\"authors\":\"F. Ouazani, Sofiane Guella, Yassine Khalfi, K. Benouis\",\"doi\":\"10.2166/wpt.2024.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n In this study, we investigate the removal of Bemacid red dye using brewery waste in a packed bed column. We examined the effects of bed height, inlet flow, and inlet dye concentration on the column dynamics of adsorption. To assess the favorable column dynamics, we analyzed the breakthrough curves (BTCs). We also used the Clark, Thomas, Bed Depth Service Time (BDST), and Adams-Bohart models to determine the kinetic constants of the adsorption column from the obtained results of the dynamic studies curve of the BTCs. Analysis of the BTC studies revealed that both the BTCs time and worn-out time values increased with an increase in bed height and inlet Bemacid red dye dosage but decreased with an increase in the inlet flow rate. The results further showed that Thomas’ model was the most suitable for describing the entire BTCs (R2 > 0.93). Using a full factorial design to estimate the percentage effects of cited dynamic parameters, we found that these parameters accounted for 98% of the adsorption capacity. This methodology for estimation provides crucial information on the effects of parameters and the extent to which the adsorption capacity depends on the studied parameters.\",\"PeriodicalId\":510255,\"journal\":{\"name\":\"Water Practice & Technology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Practice & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wpt.2024.041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2024.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimating the percentage effects of Bemacid red dye adsorption dynamic parameters using a full factorial design approach
In this study, we investigate the removal of Bemacid red dye using brewery waste in a packed bed column. We examined the effects of bed height, inlet flow, and inlet dye concentration on the column dynamics of adsorption. To assess the favorable column dynamics, we analyzed the breakthrough curves (BTCs). We also used the Clark, Thomas, Bed Depth Service Time (BDST), and Adams-Bohart models to determine the kinetic constants of the adsorption column from the obtained results of the dynamic studies curve of the BTCs. Analysis of the BTC studies revealed that both the BTCs time and worn-out time values increased with an increase in bed height and inlet Bemacid red dye dosage but decreased with an increase in the inlet flow rate. The results further showed that Thomas’ model was the most suitable for describing the entire BTCs (R2 > 0.93). Using a full factorial design to estimate the percentage effects of cited dynamic parameters, we found that these parameters accounted for 98% of the adsorption capacity. This methodology for estimation provides crucial information on the effects of parameters and the extent to which the adsorption capacity depends on the studied parameters.