{"title":"二元决策任务和反应时间结果的联合认知潜变量模型","authors":"Mahdi Mollakazemiha, Ehsan Bahrami Samani","doi":"10.1007/s40745-024-00519-2","DOIUrl":null,"url":null,"abstract":"<div><p>Traditionally, in cognitive modeling for binary decision-making tasks, stochastic differential equations, particularly a family of diffusion decision models, are applied. These models suffer from difficulties in parameter estimation and forecasting due to the non-existence of analytical solutions for the differential equations. In this paper, we introduce a joint latent variable model for binary decision-making tasks and reaction time outcomes. Additionally, accelerated Failure Time models can be used for the analysis of reaction time to estimate the effects of covariates on acceleration/deceleration of the survival time. A full likelihood-based approach is used to obtain maximum likelihood estimates of the parameters of the model.To illustrate the utility of the proposed models, a simulation study and real data are analyzed.\n</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 2","pages":"499 - 516"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Joint Cognitive Latent Variable Model for Binary Decision-making Tasks and Reaction Time Outcomes\",\"authors\":\"Mahdi Mollakazemiha, Ehsan Bahrami Samani\",\"doi\":\"10.1007/s40745-024-00519-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditionally, in cognitive modeling for binary decision-making tasks, stochastic differential equations, particularly a family of diffusion decision models, are applied. These models suffer from difficulties in parameter estimation and forecasting due to the non-existence of analytical solutions for the differential equations. In this paper, we introduce a joint latent variable model for binary decision-making tasks and reaction time outcomes. Additionally, accelerated Failure Time models can be used for the analysis of reaction time to estimate the effects of covariates on acceleration/deceleration of the survival time. A full likelihood-based approach is used to obtain maximum likelihood estimates of the parameters of the model.To illustrate the utility of the proposed models, a simulation study and real data are analyzed.\\n</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":\"12 2\",\"pages\":\"499 - 516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00519-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00519-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
A Joint Cognitive Latent Variable Model for Binary Decision-making Tasks and Reaction Time Outcomes
Traditionally, in cognitive modeling for binary decision-making tasks, stochastic differential equations, particularly a family of diffusion decision models, are applied. These models suffer from difficulties in parameter estimation and forecasting due to the non-existence of analytical solutions for the differential equations. In this paper, we introduce a joint latent variable model for binary decision-making tasks and reaction time outcomes. Additionally, accelerated Failure Time models can be used for the analysis of reaction time to estimate the effects of covariates on acceleration/deceleration of the survival time. A full likelihood-based approach is used to obtain maximum likelihood estimates of the parameters of the model.To illustrate the utility of the proposed models, a simulation study and real data are analyzed.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.