利用 Falcon-7B 和 16 位全量化技术增强电子商务聊天机器人的功能

Yang Luo, Zibu Wei, Guokun Xu, Zhengning Li, Ying Xie, Yibo Yin
{"title":"利用 Falcon-7B 和 16 位全量化技术增强电子商务聊天机器人的功能","authors":"Yang Luo, Zibu Wei, Guokun Xu, Zhengning Li, Ying Xie, Yibo Yin","doi":"10.53469/jtpes.2024.04(02).08","DOIUrl":null,"url":null,"abstract":"E-commerce chatbots play a crucial role in customer service but often struggle with understanding complex queries. This study introduces a breakthrough approach leveraging the Falcon-7B model, a state-of-the-art Large Language Model (LLM) with 7 billion parameters. Trained on a vast dataset of 1,500 billion tokens from RefinedWeb and curated corpora, the Falcon-7B model excels in natural language understanding and generation. Notably, its 16-bit full quantization transformer ensures efficient computation without compromising scalability or performance. By harnessing cutting-edge machine learning techniques, our method aims to redefine e-commerce chatbot systems, providing businesses with a robust solution for delivering personalized customer experiences.","PeriodicalId":489516,"journal":{"name":"Journal of Theory and Practice of Engineering Science","volume":"85 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enhancing E-commerce Chatbots with Falcon-7B and 16-bit Full Quantization\",\"authors\":\"Yang Luo, Zibu Wei, Guokun Xu, Zhengning Li, Ying Xie, Yibo Yin\",\"doi\":\"10.53469/jtpes.2024.04(02).08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"E-commerce chatbots play a crucial role in customer service but often struggle with understanding complex queries. This study introduces a breakthrough approach leveraging the Falcon-7B model, a state-of-the-art Large Language Model (LLM) with 7 billion parameters. Trained on a vast dataset of 1,500 billion tokens from RefinedWeb and curated corpora, the Falcon-7B model excels in natural language understanding and generation. Notably, its 16-bit full quantization transformer ensures efficient computation without compromising scalability or performance. By harnessing cutting-edge machine learning techniques, our method aims to redefine e-commerce chatbot systems, providing businesses with a robust solution for delivering personalized customer experiences.\",\"PeriodicalId\":489516,\"journal\":{\"name\":\"Journal of Theory and Practice of Engineering Science\",\"volume\":\"85 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theory and Practice of Engineering Science\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.53469/jtpes.2024.04(02).08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theory and Practice of Engineering Science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.53469/jtpes.2024.04(02).08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电子商务聊天机器人在客户服务中发挥着至关重要的作用,但往往难以理解复杂的查询。本研究介绍了一种利用 Falcon-7B 模型的突破性方法,这是一种拥有 70 亿个参数的先进大型语言模型(LLM)。Falcon-7B 模型在来自 RefinedWeb 的 15000 亿词库的庞大数据集上进行了训练,在自然语言理解和生成方面表现出色。值得注意的是,其 16 位全量化变压器可确保高效计算,同时不影响可扩展性或性能。通过利用尖端的机器学习技术,我们的方法旨在重新定义电子商务聊天机器人系统,为企业提供强大的解决方案,以提供个性化的客户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing E-commerce Chatbots with Falcon-7B and 16-bit Full Quantization
E-commerce chatbots play a crucial role in customer service but often struggle with understanding complex queries. This study introduces a breakthrough approach leveraging the Falcon-7B model, a state-of-the-art Large Language Model (LLM) with 7 billion parameters. Trained on a vast dataset of 1,500 billion tokens from RefinedWeb and curated corpora, the Falcon-7B model excels in natural language understanding and generation. Notably, its 16-bit full quantization transformer ensures efficient computation without compromising scalability or performance. By harnessing cutting-edge machine learning techniques, our method aims to redefine e-commerce chatbot systems, providing businesses with a robust solution for delivering personalized customer experiences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信