John Nyamekye Ansah, Loretta Owusu-Ansah, Selikem Asare-Brown
{"title":"智能交通管理系统改善加纳通勤城市 Ayigya 的交通状况","authors":"John Nyamekye Ansah, Loretta Owusu-Ansah, Selikem Asare-Brown","doi":"10.35940/ijeat.c4356.13030224","DOIUrl":null,"url":null,"abstract":"The issue of vehicular traffic congestion is faced by most road users all over the world, including Ghana. The complications intensify day in and day out, especially in most urban areas, due to development and urbanization. The exponential increase in road users awakens concern for an effective road transportation system to convey people and goods from one place to another. In an attempt to mitigate the effect of the problem, a system based on a statistically programmed lighting sequence was introduced. This technique served its purpose for some time and was realized to be inefficient because it controlled traffic flow by assigning a fixed amount of green light time to each phase of traffic, which meant that green light time was sometimes given to lanes even when there was no conflicting traffic. The persistent nature of the problem requires the need for an intelligent traffic management system to effectively coordinate the flow of vehicles through the available road network. The proposed system works based on priority queuing, where green and red phases are dynamically assigned to lanes depending on the present traffic volume. The proposed system uses two methods of counting to determine the highest lane count. They are the Digital Vehicle Counting (DVC) and the Manuel Vehicle Counting (MVC) methods. An effective detection zone of sixty meters is declared away from the traffic intersection. The values produced by both counting methods are fed to the Traffic Phase Router (TPR) for comparison. The lane with the highest vehicle counts from both counters is given the chance to leave the intersection. The proposed system was designed using Simulation of Urban Mobility (SUMO) software. Results obtained after the simulation showed that the proposed system performed better than the existing system based on the Key Performance Indicators (KPIs) used.","PeriodicalId":13981,"journal":{"name":"International Journal of Engineering and Advanced Technology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Traffic Management System to Improve Mobility at Ayigya, a Commuter City in Ghana\",\"authors\":\"John Nyamekye Ansah, Loretta Owusu-Ansah, Selikem Asare-Brown\",\"doi\":\"10.35940/ijeat.c4356.13030224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The issue of vehicular traffic congestion is faced by most road users all over the world, including Ghana. The complications intensify day in and day out, especially in most urban areas, due to development and urbanization. The exponential increase in road users awakens concern for an effective road transportation system to convey people and goods from one place to another. In an attempt to mitigate the effect of the problem, a system based on a statistically programmed lighting sequence was introduced. This technique served its purpose for some time and was realized to be inefficient because it controlled traffic flow by assigning a fixed amount of green light time to each phase of traffic, which meant that green light time was sometimes given to lanes even when there was no conflicting traffic. The persistent nature of the problem requires the need for an intelligent traffic management system to effectively coordinate the flow of vehicles through the available road network. The proposed system works based on priority queuing, where green and red phases are dynamically assigned to lanes depending on the present traffic volume. The proposed system uses two methods of counting to determine the highest lane count. They are the Digital Vehicle Counting (DVC) and the Manuel Vehicle Counting (MVC) methods. An effective detection zone of sixty meters is declared away from the traffic intersection. The values produced by both counting methods are fed to the Traffic Phase Router (TPR) for comparison. The lane with the highest vehicle counts from both counters is given the chance to leave the intersection. The proposed system was designed using Simulation of Urban Mobility (SUMO) software. Results obtained after the simulation showed that the proposed system performed better than the existing system based on the Key Performance Indicators (KPIs) used.\",\"PeriodicalId\":13981,\"journal\":{\"name\":\"International Journal of Engineering and Advanced Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Advanced Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijeat.c4356.13030224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Advanced Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijeat.c4356.13030224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intelligent Traffic Management System to Improve Mobility at Ayigya, a Commuter City in Ghana
The issue of vehicular traffic congestion is faced by most road users all over the world, including Ghana. The complications intensify day in and day out, especially in most urban areas, due to development and urbanization. The exponential increase in road users awakens concern for an effective road transportation system to convey people and goods from one place to another. In an attempt to mitigate the effect of the problem, a system based on a statistically programmed lighting sequence was introduced. This technique served its purpose for some time and was realized to be inefficient because it controlled traffic flow by assigning a fixed amount of green light time to each phase of traffic, which meant that green light time was sometimes given to lanes even when there was no conflicting traffic. The persistent nature of the problem requires the need for an intelligent traffic management system to effectively coordinate the flow of vehicles through the available road network. The proposed system works based on priority queuing, where green and red phases are dynamically assigned to lanes depending on the present traffic volume. The proposed system uses two methods of counting to determine the highest lane count. They are the Digital Vehicle Counting (DVC) and the Manuel Vehicle Counting (MVC) methods. An effective detection zone of sixty meters is declared away from the traffic intersection. The values produced by both counting methods are fed to the Traffic Phase Router (TPR) for comparison. The lane with the highest vehicle counts from both counters is given the chance to leave the intersection. The proposed system was designed using Simulation of Urban Mobility (SUMO) software. Results obtained after the simulation showed that the proposed system performed better than the existing system based on the Key Performance Indicators (KPIs) used.