{"title":"使用飞机喷洒装置灭火时水蔓延参数的实验研究","authors":"Serhii Panchenko, Artem Bychenko, V. Nizhnyk","doi":"10.15587/1729-4061.2024.298916","DOIUrl":null,"url":null,"abstract":"This paper reports results of an experimental study on hydrodynamic processes when water is dropped from a height, as well as their influence on the movement of liquid, in order to optimize the processes of aviation firefighting.\nThe main parameters of water dispersion were determined based on a series of experiments. It was established that the average diameter of drops when dropped from a height of 10 meters is 2.5 mm, with a maximum spraying distance of up to 15 meters. The size distribution of the droplets showed that 30 % of the droplets have a diameter of less than 2 mm, 50 % are between 2 and 5 mm, and 20 % are more than 5 mm.\nDuring the experiments, it was measured that the time for pouring water from the container is 3 seconds, and the speed of movement of water fractions when dropped from a height of 10 meters is 9.8 m/s. With an increase in the discharge height by 5 meters, the speed of water movement increased by 20 %.\nOne of the key points of the study is the improvement of the Torricelli equation by introducing the coefficient K (0.85), which takes into account the viscosity and density of water, which improved the accuracy of calculations by 15 % compared to the standard equation.\nPython was used to process and interpret the video data, along with libraries such as OpenCV for image processing, NumPy for high-performance mathematical computations, and Matplotlib for data visualization. The resulting data open up new prospects for devising aerial firefighting strategies, providing a 20 % increase in coverage area, and a 25 % reduction in firefighting time.\nTorricelli's equation was improved; a new procedure was devised for the experimental determination of water dispersion parameters, which has an important practical application in the field of fire safety.\nIn the field of fire safety, the data obtained could be used to improve aviation firefighting strategies, which would allow for greater efficiency and safety","PeriodicalId":11433,"journal":{"name":"Eastern-European Journal of Enterprise Technologies","volume":"158 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of water spreading parameters when extinguishing fires using aircraft sprinklers\",\"authors\":\"Serhii Panchenko, Artem Bychenko, V. Nizhnyk\",\"doi\":\"10.15587/1729-4061.2024.298916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports results of an experimental study on hydrodynamic processes when water is dropped from a height, as well as their influence on the movement of liquid, in order to optimize the processes of aviation firefighting.\\nThe main parameters of water dispersion were determined based on a series of experiments. It was established that the average diameter of drops when dropped from a height of 10 meters is 2.5 mm, with a maximum spraying distance of up to 15 meters. The size distribution of the droplets showed that 30 % of the droplets have a diameter of less than 2 mm, 50 % are between 2 and 5 mm, and 20 % are more than 5 mm.\\nDuring the experiments, it was measured that the time for pouring water from the container is 3 seconds, and the speed of movement of water fractions when dropped from a height of 10 meters is 9.8 m/s. With an increase in the discharge height by 5 meters, the speed of water movement increased by 20 %.\\nOne of the key points of the study is the improvement of the Torricelli equation by introducing the coefficient K (0.85), which takes into account the viscosity and density of water, which improved the accuracy of calculations by 15 % compared to the standard equation.\\nPython was used to process and interpret the video data, along with libraries such as OpenCV for image processing, NumPy for high-performance mathematical computations, and Matplotlib for data visualization. The resulting data open up new prospects for devising aerial firefighting strategies, providing a 20 % increase in coverage area, and a 25 % reduction in firefighting time.\\nTorricelli's equation was improved; a new procedure was devised for the experimental determination of water dispersion parameters, which has an important practical application in the field of fire safety.\\nIn the field of fire safety, the data obtained could be used to improve aviation firefighting strategies, which would allow for greater efficiency and safety\",\"PeriodicalId\":11433,\"journal\":{\"name\":\"Eastern-European Journal of Enterprise Technologies\",\"volume\":\"158 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eastern-European Journal of Enterprise Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/1729-4061.2024.298916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eastern-European Journal of Enterprise Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/1729-4061.2024.298916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Experimental study of water spreading parameters when extinguishing fires using aircraft sprinklers
This paper reports results of an experimental study on hydrodynamic processes when water is dropped from a height, as well as their influence on the movement of liquid, in order to optimize the processes of aviation firefighting.
The main parameters of water dispersion were determined based on a series of experiments. It was established that the average diameter of drops when dropped from a height of 10 meters is 2.5 mm, with a maximum spraying distance of up to 15 meters. The size distribution of the droplets showed that 30 % of the droplets have a diameter of less than 2 mm, 50 % are between 2 and 5 mm, and 20 % are more than 5 mm.
During the experiments, it was measured that the time for pouring water from the container is 3 seconds, and the speed of movement of water fractions when dropped from a height of 10 meters is 9.8 m/s. With an increase in the discharge height by 5 meters, the speed of water movement increased by 20 %.
One of the key points of the study is the improvement of the Torricelli equation by introducing the coefficient K (0.85), which takes into account the viscosity and density of water, which improved the accuracy of calculations by 15 % compared to the standard equation.
Python was used to process and interpret the video data, along with libraries such as OpenCV for image processing, NumPy for high-performance mathematical computations, and Matplotlib for data visualization. The resulting data open up new prospects for devising aerial firefighting strategies, providing a 20 % increase in coverage area, and a 25 % reduction in firefighting time.
Torricelli's equation was improved; a new procedure was devised for the experimental determination of water dispersion parameters, which has an important practical application in the field of fire safety.
In the field of fire safety, the data obtained could be used to improve aviation firefighting strategies, which would allow for greater efficiency and safety
期刊介绍:
Terminology used in the title of the "East European Journal of Enterprise Technologies" - "enterprise technologies" should be read as "industrial technologies". "Eastern-European Journal of Enterprise Technologies" publishes all those best ideas from the science, which can be introduced in the industry. Since, obtaining the high-quality, competitive industrial products is based on introducing high technologies from various independent spheres of scientific researches, but united by a common end result - a finished high-technology product. Among these scientific spheres, there are engineering, power engineering and energy saving, technologies of inorganic and organic substances and materials science, information technologies and control systems. Publishing scientific papers in these directions are the main development "vectors" of the "Eastern-European Journal of Enterprise Technologies". Since, these are those directions of scientific researches, the results of which can be directly used in modern industrial production: space and aircraft industry, instrument-making industry, mechanical engineering, power engineering, chemical industry and metallurgy.