自监督学习在自然语言处理中的应用

Ye Zhang
{"title":"自监督学习在自然语言处理中的应用","authors":"Ye Zhang","doi":"10.54097/urpv6i8g3j","DOIUrl":null,"url":null,"abstract":"Self-supervised learning uses the label-free data learning model and has a significant impact on the NLP task. It reduces data annotation costs and improves performance. The main applications include pre-training models such as BERT and GPT, contrast learning, and pseudo-supervised and semi-supervised methods. It has been successfully applied in text classification, emotion analysis and other fields. Future research directions include mixed unsupervised learning, cross-modal learning and improving interpretability of models while focusing on ethical social issues.","PeriodicalId":475988,"journal":{"name":"Journal of Computing and Electronic Information Management","volume":"146 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of self-supervised learning in natural language processing\",\"authors\":\"Ye Zhang\",\"doi\":\"10.54097/urpv6i8g3j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-supervised learning uses the label-free data learning model and has a significant impact on the NLP task. It reduces data annotation costs and improves performance. The main applications include pre-training models such as BERT and GPT, contrast learning, and pseudo-supervised and semi-supervised methods. It has been successfully applied in text classification, emotion analysis and other fields. Future research directions include mixed unsupervised learning, cross-modal learning and improving interpretability of models while focusing on ethical social issues.\",\"PeriodicalId\":475988,\"journal\":{\"name\":\"Journal of Computing and Electronic Information Management\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Electronic Information Management\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.54097/urpv6i8g3j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Electronic Information Management","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.54097/urpv6i8g3j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自监督学习使用无标签数据学习模型,对 NLP 任务有重大影响。它降低了数据标注成本,提高了性能。主要应用包括 BERT 和 GPT 等预训练模型、对比学习以及伪监督和半监督方法。它已成功应用于文本分类、情感分析等领域。未来的研究方向包括混合无监督学习、跨模态学习和提高模型的可解释性,同时关注社会伦理问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of self-supervised learning in natural language processing
Self-supervised learning uses the label-free data learning model and has a significant impact on the NLP task. It reduces data annotation costs and improves performance. The main applications include pre-training models such as BERT and GPT, contrast learning, and pseudo-supervised and semi-supervised methods. It has been successfully applied in text classification, emotion analysis and other fields. Future research directions include mixed unsupervised learning, cross-modal learning and improving interpretability of models while focusing on ethical social issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信