Sheetal Yadav, Manoj Ughade, D. Singh, Manoj Kumar Shukla
{"title":"A 度量空间中 Kannan 互推、Riech 互推和 Dass-Gupta 互推有理类型收缩的定点定理","authors":"Sheetal Yadav, Manoj Ughade, D. Singh, Manoj Kumar Shukla","doi":"10.9734/arjom/2024/v20i2782","DOIUrl":null,"url":null,"abstract":"(\\(\\lambda\\), \\(\\alpha\\))- interpolative Kannan contraction, (\\(\\lambda\\), \\(\\alpha\\), \\(\\beta\\))- interpolative Kannan contraction, (\\(\\lambda\\), \\(\\alpha\\), \\(\\beta\\), \\(\\gamma\\))- interpolative Riech contraction and (\\(\\lambda\\), \\(\\alpha\\), \\(\\beta\\))- interpolative Dass-Gupta rational contraction are presented in this study. Furthermore, we prove a few fixed-point theorems for interpolative contractions in complete A-metric spaces. These theorems also extend and apply to an A-metric setting several interesting results from metric fixed-point theory.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"19 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed Point Theorems for Kannan Interpolative, Riech Interpolative and Dass-Gupta Interpolative Rational type Contractions in A-Metric Spaces\",\"authors\":\"Sheetal Yadav, Manoj Ughade, D. Singh, Manoj Kumar Shukla\",\"doi\":\"10.9734/arjom/2024/v20i2782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(\\\\(\\\\lambda\\\\), \\\\(\\\\alpha\\\\))- interpolative Kannan contraction, (\\\\(\\\\lambda\\\\), \\\\(\\\\alpha\\\\), \\\\(\\\\beta\\\\))- interpolative Kannan contraction, (\\\\(\\\\lambda\\\\), \\\\(\\\\alpha\\\\), \\\\(\\\\beta\\\\), \\\\(\\\\gamma\\\\))- interpolative Riech contraction and (\\\\(\\\\lambda\\\\), \\\\(\\\\alpha\\\\), \\\\(\\\\beta\\\\))- interpolative Dass-Gupta rational contraction are presented in this study. Furthermore, we prove a few fixed-point theorems for interpolative contractions in complete A-metric spaces. These theorems also extend and apply to an A-metric setting several interesting results from metric fixed-point theory.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2024/v20i2782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2024/v20i2782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
(\(\lambda\),\(\(α\))) - 插值卡南收缩, (\(\lambda\),\(α\),\(\(β\)) - 插值卡南收缩, (\(\lambda\),\(α\),\(β\)、\((\gamma))-插值里奇收缩和((\lambda), ((\alpha), ((\beta))-插值达斯-古普塔有理收缩在本研究中被提出。此外,我们还证明了完全 A 度量空间中内插收缩的几个定点定理。这些定理还将公设定点理论中几个有趣的结果扩展并应用到了 A 度量环境中。
Fixed Point Theorems for Kannan Interpolative, Riech Interpolative and Dass-Gupta Interpolative Rational type Contractions in A-Metric Spaces
(\(\lambda\), \(\alpha\))- interpolative Kannan contraction, (\(\lambda\), \(\alpha\), \(\beta\))- interpolative Kannan contraction, (\(\lambda\), \(\alpha\), \(\beta\), \(\gamma\))- interpolative Riech contraction and (\(\lambda\), \(\alpha\), \(\beta\))- interpolative Dass-Gupta rational contraction are presented in this study. Furthermore, we prove a few fixed-point theorems for interpolative contractions in complete A-metric spaces. These theorems also extend and apply to an A-metric setting several interesting results from metric fixed-point theory.