开发带有两个多向风轮的风力涡轮机

Q3 Mathematics
S. Issenov, Pyotr Antipov, Marat Koshumbayev, Dauren Issabekov
{"title":"开发带有两个多向风轮的风力涡轮机","authors":"S. Issenov, Pyotr Antipov, Marat Koshumbayev, Dauren Issabekov","doi":"10.15587/1729-4061.2024.299128","DOIUrl":null,"url":null,"abstract":"The object of research is a wind generator with counter-rotating blades. A special feature of this design is the presence of two wind wheels that rotate in opposite directions. Wind wheels are on the same axis, between them there is a certain distance, which is determined based on research data. The problem of modern wind power is the low range of operating wind speeds, weak generation at low wind speeds. The upper speed limit is 25 m/s, exceeding which leads to breakdowns of various units of the wind station, especially this affects the integrity of the blades, rupture of the wind wheel, cracking of the metal parts of the bearings and their fasteners. The wind turbine presented in the article allows to achieve an increase in the generation of electric energy by 50–70 %. This is achieved by increasing the relative rotational speed of the rotor relative to the stator. Therefore, even at low speeds, the rotor speed relative to the stator increases, which leads to an increase in power generation. The design of the device includes: two wind wheels, one transmits its rotation to the stator, the second to the rotor axis, a metal base, a current collector mechanism. For conducting the research, an experimental model and a semi-industrial installation were used. Results studies have confirmed the theoretical increase in the generation of electrical energy by this design. The peculiarity of the obtained results is connected with the determination of the distance between two wind wheels, the optimal distance between them corresponds to the maximum energy generation. A distinctive feature of the results obtained can be considered an increase in the number of blades on the second wind wheel","PeriodicalId":11433,"journal":{"name":"Eastern-European Journal of Enterprise Technologies","volume":"68 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a wind turbine with two multidirectional wind wheels\",\"authors\":\"S. Issenov, Pyotr Antipov, Marat Koshumbayev, Dauren Issabekov\",\"doi\":\"10.15587/1729-4061.2024.299128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of research is a wind generator with counter-rotating blades. A special feature of this design is the presence of two wind wheels that rotate in opposite directions. Wind wheels are on the same axis, between them there is a certain distance, which is determined based on research data. The problem of modern wind power is the low range of operating wind speeds, weak generation at low wind speeds. The upper speed limit is 25 m/s, exceeding which leads to breakdowns of various units of the wind station, especially this affects the integrity of the blades, rupture of the wind wheel, cracking of the metal parts of the bearings and their fasteners. The wind turbine presented in the article allows to achieve an increase in the generation of electric energy by 50–70 %. This is achieved by increasing the relative rotational speed of the rotor relative to the stator. Therefore, even at low speeds, the rotor speed relative to the stator increases, which leads to an increase in power generation. The design of the device includes: two wind wheels, one transmits its rotation to the stator, the second to the rotor axis, a metal base, a current collector mechanism. For conducting the research, an experimental model and a semi-industrial installation were used. Results studies have confirmed the theoretical increase in the generation of electrical energy by this design. The peculiarity of the obtained results is connected with the determination of the distance between two wind wheels, the optimal distance between them corresponds to the maximum energy generation. A distinctive feature of the results obtained can be considered an increase in the number of blades on the second wind wheel\",\"PeriodicalId\":11433,\"journal\":{\"name\":\"Eastern-European Journal of Enterprise Technologies\",\"volume\":\"68 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eastern-European Journal of Enterprise Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/1729-4061.2024.299128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eastern-European Journal of Enterprise Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/1729-4061.2024.299128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究对象是一种带有反向旋转叶片的风力发电机。这种设计的一个特点是有两个旋转方向相反的风轮。风轮位于同一轴线上,它们之间有一定的距离,这个距离是根据研究数据确定的。现代风力发电的问题是运行风速范围小,低风速时发电能力弱。风速上限为 25 米/秒,超过这一速度会导致风力发电站的各种装置发生故障,尤其是影响叶片的完整性、风轮破裂、轴承及其紧固件的金属部分开裂。文章中介绍的风力涡轮机可将发电量提高 50-70%。这是通过提高转子相对于定子的相对转速实现的。因此,即使在低速运转时,转子相对于定子的转速也会增加,从而提高发电量。该装置的设计包括:两个风轮,一个将其旋转传递给定子,另一个将其旋转传递给转子轴,一个金属底座,一个电流收集机构。为开展研究,使用了一个实验模型和一个半工业装置。研究结果证实了这种设计在理论上增加了电能的产生。所获结果的特殊性与确定两个风轮之间的距离有关,它们之间的最佳距离与最大发电量相对应。所获结果的一个显著特点是增加了第二个风轮的叶片数量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a wind turbine with two multidirectional wind wheels
The object of research is a wind generator with counter-rotating blades. A special feature of this design is the presence of two wind wheels that rotate in opposite directions. Wind wheels are on the same axis, between them there is a certain distance, which is determined based on research data. The problem of modern wind power is the low range of operating wind speeds, weak generation at low wind speeds. The upper speed limit is 25 m/s, exceeding which leads to breakdowns of various units of the wind station, especially this affects the integrity of the blades, rupture of the wind wheel, cracking of the metal parts of the bearings and their fasteners. The wind turbine presented in the article allows to achieve an increase in the generation of electric energy by 50–70 %. This is achieved by increasing the relative rotational speed of the rotor relative to the stator. Therefore, even at low speeds, the rotor speed relative to the stator increases, which leads to an increase in power generation. The design of the device includes: two wind wheels, one transmits its rotation to the stator, the second to the rotor axis, a metal base, a current collector mechanism. For conducting the research, an experimental model and a semi-industrial installation were used. Results studies have confirmed the theoretical increase in the generation of electrical energy by this design. The peculiarity of the obtained results is connected with the determination of the distance between two wind wheels, the optimal distance between them corresponds to the maximum energy generation. A distinctive feature of the results obtained can be considered an increase in the number of blades on the second wind wheel
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eastern-European Journal of Enterprise Technologies
Eastern-European Journal of Enterprise Technologies Mathematics-Applied Mathematics
CiteScore
2.00
自引率
0.00%
发文量
369
审稿时长
6 weeks
期刊介绍: Terminology used in the title of the "East European Journal of Enterprise Technologies" - "enterprise technologies" should be read as "industrial technologies". "Eastern-European Journal of Enterprise Technologies" publishes all those best ideas from the science, which can be introduced in the industry. Since, obtaining the high-quality, competitive industrial products is based on introducing high technologies from various independent spheres of scientific researches, but united by a common end result - a finished high-technology product. Among these scientific spheres, there are engineering, power engineering and energy saving, technologies of inorganic and organic substances and materials science, information technologies and control systems. Publishing scientific papers in these directions are the main development "vectors" of the "Eastern-European Journal of Enterprise Technologies". Since, these are those directions of scientific researches, the results of which can be directly used in modern industrial production: space and aircraft industry, instrument-making industry, mechanical engineering, power engineering, chemical industry and metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信