染色废水有机物指标的多元统计分析

Youngbeom Cho, June-shu Ahn, Chae ho kim, Dong chul Shin
{"title":"染色废水有机物指标的多元统计分析","authors":"Youngbeom Cho, June-shu Ahn, Chae ho kim, Dong chul Shin","doi":"10.4491/ksee.2024.46.2.57","DOIUrl":null,"url":null,"abstract":"Objectives:Since 2016, TOC (Total Organic Carbon) has replaced COD (Chemical Oxygen Demand) as an organic indicator for effluent wastewater quality standards. However, the distribution of organic substances by process in wastewater treatment facilities is not properly identified, making it difficult to secure stable treated wastewater quality. Therefore, in this study, we identified the correlation between TOC and existing organic matter indicators in raw wastewater, primary treated, secondary treated, and effluent wastewater for dyeing wastewater.Methods:Samples for each process were collected twice a week, a total of 24 times, from a dyeing wastewater treatment plant located in Y-city, Gyeonggi-do, and organic pollutant indicators (TOC, CODCr, CODMn, BOD5) were analyzed. TOC was analyzed by the NPOC (non-purgeable organic carbon) method using TOC-VCHP (Shimadzu, Japan). Using the analysis results, the characteristics of organic pollutants in dyeing wastewater were analyzed. In addition, multivariate statistical analysis was performed using SPSS to analyze correlations between organic pollutant indicators and principal component analysis.Results and Discussion:As a result of multivariate statistical analysis, TOC was inflowed at an average of 574.9 mg/L and treated at 58.2mg/L. In the case of CODCr, CODMn, and BOD5, the inflow was 1,644, 448.9, and 440.7 mg/L and was treated at 98.2, 39.7, and 10.8mg/L. When evaluated based on effluent water quality standards, all of them satisfied the Region III standards, but were discharged at a relatively high level compared to the TOC concentration of sewage treatment plants effluent. As a result of comparing correlations between organic matter indicators through Pearson correlation analysis, the inflow raw water shows a high positive correlation with TOC:TCODCr (r=0.720), TOC:TCODMn (r=0.636), and TOC:TBOD5 (r=0.302) showed low correlation. This is reason to be due to the fact that most organic substances in dyeing wastewater are non-degradable substances and have low biodegradability. As a result of principal component analysis of influent, primary treated, and final treated, three main components each (two for final treated) were extracted, with cumulative contribution rates of 80.1%, 83.2%, and 95.6%.Conclusion:Because the properties of wastewater differ greatly depending on the type of leather and chemicals handled at the dyeing factory, the correlation between influent water was low, but the correlation between treated water and treated water was relatively high. The correlation between processes in wastewater treatment facilities also tended to increase toward later processes. It is believed that the above statistical analysis can be used as basic data for effective organic matter management.","PeriodicalId":16127,"journal":{"name":"Journal of Korean Society of Environmental Engineers","volume":"21 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate Statistical Analysis of Dyeing Wastewater Organic Matter Indicators\",\"authors\":\"Youngbeom Cho, June-shu Ahn, Chae ho kim, Dong chul Shin\",\"doi\":\"10.4491/ksee.2024.46.2.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives:Since 2016, TOC (Total Organic Carbon) has replaced COD (Chemical Oxygen Demand) as an organic indicator for effluent wastewater quality standards. However, the distribution of organic substances by process in wastewater treatment facilities is not properly identified, making it difficult to secure stable treated wastewater quality. Therefore, in this study, we identified the correlation between TOC and existing organic matter indicators in raw wastewater, primary treated, secondary treated, and effluent wastewater for dyeing wastewater.Methods:Samples for each process were collected twice a week, a total of 24 times, from a dyeing wastewater treatment plant located in Y-city, Gyeonggi-do, and organic pollutant indicators (TOC, CODCr, CODMn, BOD5) were analyzed. TOC was analyzed by the NPOC (non-purgeable organic carbon) method using TOC-VCHP (Shimadzu, Japan). Using the analysis results, the characteristics of organic pollutants in dyeing wastewater were analyzed. In addition, multivariate statistical analysis was performed using SPSS to analyze correlations between organic pollutant indicators and principal component analysis.Results and Discussion:As a result of multivariate statistical analysis, TOC was inflowed at an average of 574.9 mg/L and treated at 58.2mg/L. In the case of CODCr, CODMn, and BOD5, the inflow was 1,644, 448.9, and 440.7 mg/L and was treated at 98.2, 39.7, and 10.8mg/L. When evaluated based on effluent water quality standards, all of them satisfied the Region III standards, but were discharged at a relatively high level compared to the TOC concentration of sewage treatment plants effluent. As a result of comparing correlations between organic matter indicators through Pearson correlation analysis, the inflow raw water shows a high positive correlation with TOC:TCODCr (r=0.720), TOC:TCODMn (r=0.636), and TOC:TBOD5 (r=0.302) showed low correlation. This is reason to be due to the fact that most organic substances in dyeing wastewater are non-degradable substances and have low biodegradability. As a result of principal component analysis of influent, primary treated, and final treated, three main components each (two for final treated) were extracted, with cumulative contribution rates of 80.1%, 83.2%, and 95.6%.Conclusion:Because the properties of wastewater differ greatly depending on the type of leather and chemicals handled at the dyeing factory, the correlation between influent water was low, but the correlation between treated water and treated water was relatively high. The correlation between processes in wastewater treatment facilities also tended to increase toward later processes. It is believed that the above statistical analysis can be used as basic data for effective organic matter management.\",\"PeriodicalId\":16127,\"journal\":{\"name\":\"Journal of Korean Society of Environmental Engineers\",\"volume\":\"21 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Korean Society of Environmental Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4491/ksee.2024.46.2.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Society of Environmental Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4491/ksee.2024.46.2.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标:自 2016 年起,TOC(总有机碳)已取代 COD(化学需氧量),成为污水出水水质标准的有机指标。然而,有机物在污水处理设施中按工艺分布的情况并没有得到正确的确定,因此很难确保处理后的污水水质稳定。因此,本研究确定了染色废水的原废水、一级处理废水、二级处理废水和出水的 TOC 与现有有机物指标之间的相关性。方法:从京畿道 Y 市的一家染色废水处理厂每周收集两次各工序的样品,共 24 次,分析有机污染物指标(TOC、CODCr、CODMn、BOD5)。TOC 采用 TOC-VCHP (日本岛津)的 NPOC(不可净化有机碳)法分析。利用分析结果分析了印染废水中有机污染物的特征。此外,还利用 SPSS 进行了多元统计分析,分析了有机污染物指标之间的相关性,并进行了主成分分析。结果与讨论:经多元统计分析,TOC 的平均流入量为 574.9 mg/L,处理量为 58.2 mg/L。至于 CODCr、CODMn 和 BOD5,流入量分别为 1 644、448.9 和 440.7 mg/L,处理量分别为 98.2、39.7 和 10.8 mg/L。根据出水水质标准进行评估,所有污水均符合第 III 区标准,但与污水处理厂出水的 TOC 浓度相比,排放水平相对较高。通过皮尔逊相关分析比较有机物指标之间的相关性,结果显示,进水原水与 TOC:TCODCr 呈高度正相关(r=0.720),TOC:TCODMn 呈高度正相关(r=0.636),TOC:TBOD5 呈低相关(r=0.302)。这是因为印染废水中的有机物多为难降解物质,生物降解性低。对进水、初级处理水和最终处理水进行主成分分析,各提取出三个主要成分(最终处理水提取出两个),累计贡献率分别为 80.1%、83.2% 和 95.6%。废水处理设施中各工序之间的相关性也呈向后工序增加的趋势。相信上述统计分析可作为有效管理有机物的基础数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate Statistical Analysis of Dyeing Wastewater Organic Matter Indicators
Objectives:Since 2016, TOC (Total Organic Carbon) has replaced COD (Chemical Oxygen Demand) as an organic indicator for effluent wastewater quality standards. However, the distribution of organic substances by process in wastewater treatment facilities is not properly identified, making it difficult to secure stable treated wastewater quality. Therefore, in this study, we identified the correlation between TOC and existing organic matter indicators in raw wastewater, primary treated, secondary treated, and effluent wastewater for dyeing wastewater.Methods:Samples for each process were collected twice a week, a total of 24 times, from a dyeing wastewater treatment plant located in Y-city, Gyeonggi-do, and organic pollutant indicators (TOC, CODCr, CODMn, BOD5) were analyzed. TOC was analyzed by the NPOC (non-purgeable organic carbon) method using TOC-VCHP (Shimadzu, Japan). Using the analysis results, the characteristics of organic pollutants in dyeing wastewater were analyzed. In addition, multivariate statistical analysis was performed using SPSS to analyze correlations between organic pollutant indicators and principal component analysis.Results and Discussion:As a result of multivariate statistical analysis, TOC was inflowed at an average of 574.9 mg/L and treated at 58.2mg/L. In the case of CODCr, CODMn, and BOD5, the inflow was 1,644, 448.9, and 440.7 mg/L and was treated at 98.2, 39.7, and 10.8mg/L. When evaluated based on effluent water quality standards, all of them satisfied the Region III standards, but were discharged at a relatively high level compared to the TOC concentration of sewage treatment plants effluent. As a result of comparing correlations between organic matter indicators through Pearson correlation analysis, the inflow raw water shows a high positive correlation with TOC:TCODCr (r=0.720), TOC:TCODMn (r=0.636), and TOC:TBOD5 (r=0.302) showed low correlation. This is reason to be due to the fact that most organic substances in dyeing wastewater are non-degradable substances and have low biodegradability. As a result of principal component analysis of influent, primary treated, and final treated, three main components each (two for final treated) were extracted, with cumulative contribution rates of 80.1%, 83.2%, and 95.6%.Conclusion:Because the properties of wastewater differ greatly depending on the type of leather and chemicals handled at the dyeing factory, the correlation between influent water was low, but the correlation between treated water and treated water was relatively high. The correlation between processes in wastewater treatment facilities also tended to increase toward later processes. It is believed that the above statistical analysis can be used as basic data for effective organic matter management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信