估计和校准马尔可夫链样本误差方差

Yann Vestring, Javad Tavakoli
{"title":"估计和校准马尔可夫链样本误差方差","authors":"Yann Vestring, Javad Tavakoli","doi":"10.5539/ijsp.v13n1p10","DOIUrl":null,"url":null,"abstract":"Markov chain Monte Carlo (MCMC) methods are a powerful and versatile tool with applications spanning a wide spectrum of fields, including Bayesian inference, computational biology, and physics. One of the key challenges in applying MCMC algorithms is to deal with estimation error. The main result in this article is a closed form, non-asymptotic solution for the sample error variance of a single MCMC  estimate. Importantly, this result assumes that the state-space is finite and discrete. We demonstrate with examples how this result can help estimate and calibrate MCMC estimation error variance in the more general case, when the state-space is continuous and/or unbounded.","PeriodicalId":89781,"journal":{"name":"International journal of statistics and probability","volume":"21 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating and Calibrating Markov Chain Sample Error Variance\",\"authors\":\"Yann Vestring, Javad Tavakoli\",\"doi\":\"10.5539/ijsp.v13n1p10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Markov chain Monte Carlo (MCMC) methods are a powerful and versatile tool with applications spanning a wide spectrum of fields, including Bayesian inference, computational biology, and physics. One of the key challenges in applying MCMC algorithms is to deal with estimation error. The main result in this article is a closed form, non-asymptotic solution for the sample error variance of a single MCMC  estimate. Importantly, this result assumes that the state-space is finite and discrete. We demonstrate with examples how this result can help estimate and calibrate MCMC estimation error variance in the more general case, when the state-space is continuous and/or unbounded.\",\"PeriodicalId\":89781,\"journal\":{\"name\":\"International journal of statistics and probability\",\"volume\":\"21 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of statistics and probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ijsp.v13n1p10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ijsp.v13n1p10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

马尔可夫链蒙特卡罗(MCMC)方法是一种功能强大、用途广泛的工具,其应用领域十分广泛,包括贝叶斯推理、计算生物学和物理学。应用 MCMC 算法的主要挑战之一是处理估计误差。本文的主要结果是单个 MCMC 估计的样本误差方差的封闭式非渐近解。重要的是,这一结果假设状态空间是有限且离散的。我们用实例演示了在状态空间连续和/或无界的更一般情况下,这一结果如何帮助估计和校准 MCMC 估计误差方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating and Calibrating Markov Chain Sample Error Variance
Markov chain Monte Carlo (MCMC) methods are a powerful and versatile tool with applications spanning a wide spectrum of fields, including Bayesian inference, computational biology, and physics. One of the key challenges in applying MCMC algorithms is to deal with estimation error. The main result in this article is a closed form, non-asymptotic solution for the sample error variance of a single MCMC  estimate. Importantly, this result assumes that the state-space is finite and discrete. We demonstrate with examples how this result can help estimate and calibrate MCMC estimation error variance in the more general case, when the state-space is continuous and/or unbounded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信