分数线性 Matroid 匹配处于准 NC 状态

Rohit Gurjar, Taihei Oki, Roshan Raj
{"title":"分数线性 Matroid 匹配处于准 NC 状态","authors":"Rohit Gurjar, Taihei Oki, Roshan Raj","doi":"10.48550/arXiv.2402.18276","DOIUrl":null,"url":null,"abstract":"The matching and linear matroid intersection problems are solvable in quasi-NC, meaning that there exist deterministic algorithms that run in polylogarithmic time and use quasi-polynomially many parallel processors. However, such a parallel algorithm is unknown for linear matroid matching, which generalizes both of these problems. In this work, we propose a quasi-NC algorithm for fractional linear matroid matching, which is a relaxation of linear matroid matching and commonly generalizes fractional matching and linear matroid intersection. Our algorithm builds upon the connection of fractional matroid matching to non-commutative Edmonds' problem recently revealed by Oki and Soma~(2023). As a corollary, we also solve black-box non-commutative Edmonds' problem with rank-two skew-symmetric coefficients.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"28 17","pages":"TR24-044"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Linear Matroid Matching is in quasi-NC\",\"authors\":\"Rohit Gurjar, Taihei Oki, Roshan Raj\",\"doi\":\"10.48550/arXiv.2402.18276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The matching and linear matroid intersection problems are solvable in quasi-NC, meaning that there exist deterministic algorithms that run in polylogarithmic time and use quasi-polynomially many parallel processors. However, such a parallel algorithm is unknown for linear matroid matching, which generalizes both of these problems. In this work, we propose a quasi-NC algorithm for fractional linear matroid matching, which is a relaxation of linear matroid matching and commonly generalizes fractional matching and linear matroid intersection. Our algorithm builds upon the connection of fractional matroid matching to non-commutative Edmonds' problem recently revealed by Oki and Soma~(2023). As a corollary, we also solve black-box non-commutative Edmonds' problem with rank-two skew-symmetric coefficients.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"28 17\",\"pages\":\"TR24-044\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2402.18276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.18276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

匹配问题和线性矩阵相交问题在准数控中是可以求解的,这意味着存在运行时间为多对数的确定性算法,并且可以使用准对数数量的并行处理器。然而,这种并行算法对于线性矩阵匹配问题还不得而知,而线性矩阵匹配问题是这两个问题的一般化。在这项工作中,我们提出了分数线性矩阵匹配的准数控算法,这是线性矩阵匹配的一种松弛,通常是对分数匹配和线性矩阵相交的概括。我们的算法建立在 Oki 和 Soma~(2023) 最近揭示的分数矩阵匹配与非交换 Edmonds 问题的联系之上。作为推论,我们还解决了具有秩二倾斜对称系数的黑箱非交换埃德蒙兹问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Linear Matroid Matching is in quasi-NC
The matching and linear matroid intersection problems are solvable in quasi-NC, meaning that there exist deterministic algorithms that run in polylogarithmic time and use quasi-polynomially many parallel processors. However, such a parallel algorithm is unknown for linear matroid matching, which generalizes both of these problems. In this work, we propose a quasi-NC algorithm for fractional linear matroid matching, which is a relaxation of linear matroid matching and commonly generalizes fractional matching and linear matroid intersection. Our algorithm builds upon the connection of fractional matroid matching to non-commutative Edmonds' problem recently revealed by Oki and Soma~(2023). As a corollary, we also solve black-box non-commutative Edmonds' problem with rank-two skew-symmetric coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信