基于 GRU 网络和孤立森林的铅酸蓄电池电荷状态预测

Guocheng Li, Zhanying Li, Yinghao Zhang, Yang Xiao, Ming Chen
{"title":"基于 GRU 网络和孤立森林的铅酸蓄电池电荷状态预测","authors":"Guocheng Li, Zhanying Li, Yinghao Zhang, Yang Xiao, Ming Chen","doi":"10.54097/x5pmz998zq","DOIUrl":null,"url":null,"abstract":"Accurate prediction of the state of charge (SOC) of lead-acid batteries is the key to ensuring battery life. In this paper, a new combined SOC prediction model IF-GRU (Isolation Forest, Gated Recurrent Unit) is proposed. The model combines the Isolation Forest anomaly detection algorithm and the Gated Recurrent Network. The Isolation Forest algorithm is used to detect anomalous and missing values in the raw data. Length dependence of the GRU network can be further utilized to perform high-accuracy SOC estimation by implementing a sliding window that takes into account the data's charging and discharging details. In addition, the conventional Adam optimizer is utilized to improve the convergence speed of model training. The experimental data demonstrate that the IF-GRU model proposed in this paper has higher prediction accuracy and convergence speed with a RMSE of 1.59% compared with traditional LSTM network, GRU network, and BP network.","PeriodicalId":475988,"journal":{"name":"Journal of Computing and Electronic Information Management","volume":"81 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of State of Charge for Lead-acid Batteries Based on GRU Network and Isolated Forest\",\"authors\":\"Guocheng Li, Zhanying Li, Yinghao Zhang, Yang Xiao, Ming Chen\",\"doi\":\"10.54097/x5pmz998zq\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of the state of charge (SOC) of lead-acid batteries is the key to ensuring battery life. In this paper, a new combined SOC prediction model IF-GRU (Isolation Forest, Gated Recurrent Unit) is proposed. The model combines the Isolation Forest anomaly detection algorithm and the Gated Recurrent Network. The Isolation Forest algorithm is used to detect anomalous and missing values in the raw data. Length dependence of the GRU network can be further utilized to perform high-accuracy SOC estimation by implementing a sliding window that takes into account the data's charging and discharging details. In addition, the conventional Adam optimizer is utilized to improve the convergence speed of model training. The experimental data demonstrate that the IF-GRU model proposed in this paper has higher prediction accuracy and convergence speed with a RMSE of 1.59% compared with traditional LSTM network, GRU network, and BP network.\",\"PeriodicalId\":475988,\"journal\":{\"name\":\"Journal of Computing and Electronic Information Management\",\"volume\":\"81 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Electronic Information Management\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.54097/x5pmz998zq\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Electronic Information Management","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.54097/x5pmz998zq","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测铅酸蓄电池的充电状态(SOC)是确保电池寿命的关键。本文提出了一种新的 SOC 预测组合模型 IF-GRU(隔离森林,门控递归单元)。该模型结合了隔离森林异常检测算法和门控递归网络。Isolation Forest 算法用于检测原始数据中的异常值和缺失值。考虑到数据的充电和放电细节,通过实施滑动窗口,可以进一步利用 GRU 网络的长度依赖性来执行高精度的 SOC 估算。此外,还利用传统的 Adam 优化器提高了模型训练的收敛速度。实验数据表明,与传统的 LSTM 网络、GRU 网络和 BP 网络相比,本文提出的 IF-GRU 模型具有更高的预测精度和收敛速度,RMSE 为 1.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of State of Charge for Lead-acid Batteries Based on GRU Network and Isolated Forest
Accurate prediction of the state of charge (SOC) of lead-acid batteries is the key to ensuring battery life. In this paper, a new combined SOC prediction model IF-GRU (Isolation Forest, Gated Recurrent Unit) is proposed. The model combines the Isolation Forest anomaly detection algorithm and the Gated Recurrent Network. The Isolation Forest algorithm is used to detect anomalous and missing values in the raw data. Length dependence of the GRU network can be further utilized to perform high-accuracy SOC estimation by implementing a sliding window that takes into account the data's charging and discharging details. In addition, the conventional Adam optimizer is utilized to improve the convergence speed of model training. The experimental data demonstrate that the IF-GRU model proposed in this paper has higher prediction accuracy and convergence speed with a RMSE of 1.59% compared with traditional LSTM network, GRU network, and BP network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信