{"title":"FBMC/OQAM 系统中基于表面的可重构智能传播控制","authors":"R. Patra, A. Mahapatro","doi":"10.26636/jtit.2024.1.1326","DOIUrl":null,"url":null,"abstract":"In this paper, transmission of filter bank multi-carrier (FBMC) modulated signal through reconfigurable intelligent surfaces (RIS) is proposed as an assuring technique for future wireless communication. RIS deliberately alters phases of incident signals to enhance quality of the received signal. Simulation outcomes show that it is possible to establish RIS-based FBMC communications in which RIS functions as an intelligent reflector with information concerning channel phases. It is observed that RIS-based FBMC transmissions may be a prospective solution for beyond 5G communication.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"306 1‐2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable Intelligent Surface-based Propagation Control in FBMC/OQAM Systems\",\"authors\":\"R. Patra, A. Mahapatro\",\"doi\":\"10.26636/jtit.2024.1.1326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, transmission of filter bank multi-carrier (FBMC) modulated signal through reconfigurable intelligent surfaces (RIS) is proposed as an assuring technique for future wireless communication. RIS deliberately alters phases of incident signals to enhance quality of the received signal. Simulation outcomes show that it is possible to establish RIS-based FBMC communications in which RIS functions as an intelligent reflector with information concerning channel phases. It is observed that RIS-based FBMC transmissions may be a prospective solution for beyond 5G communication.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\"306 1‐2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2024.1.1326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.1.1326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Reconfigurable Intelligent Surface-based Propagation Control in FBMC/OQAM Systems
In this paper, transmission of filter bank multi-carrier (FBMC) modulated signal through reconfigurable intelligent surfaces (RIS) is proposed as an assuring technique for future wireless communication. RIS deliberately alters phases of incident signals to enhance quality of the received signal. Simulation outcomes show that it is possible to establish RIS-based FBMC communications in which RIS functions as an intelligent reflector with information concerning channel phases. It is observed that RIS-based FBMC transmissions may be a prospective solution for beyond 5G communication.