{"title":"三十个欧洲国家二氧化碳排放序列的统计分析与建模","authors":"A. Bărbulescu","doi":"10.3390/cli12030034","DOIUrl":null,"url":null,"abstract":"In recent decades, an increase in the earth’s atmospheric temperature has been noticed due to the augmentation of the volume of gases with the greenhouse effect (GHG) released into the atmosphere. To reduce this effect, the European Union’s directives indicate the action directions for reducing these emissions, among which carbon dioxide (CO2) recorded the highest amount. In this context, the article analyzes the CO2 series reported in 1990–2021 by 30 European countries. The Kruskal-Wallis test rejected the hypothesis that the series comes from the same underlying distribution. The Anderson-Darling test rejected the normality hypothesis for seven series out of thirty, and Sen’s procedure found a decreasing trend slope only for 17 series. ARIMA models have been built for all individual series. Grouping the series (by the k-means and hierarchical clustering) provided the base for building the Regional series (RegS), which describes the CO2 pollution evolution over Europe. The advantage of this approach is to provide the synthetic image of the regional evolution of the CO2 emission volume (mt), incorporating information from 30 series (one for each country) in only one—RegS. It is also shown that selecting the number of clusters involved in building RegS and assessing their stability is essential for the model’s goodness of fit.","PeriodicalId":37615,"journal":{"name":"Climate","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Analysis and Modeling of the CO2 Series Emitted by Thirty European Countries\",\"authors\":\"A. Bărbulescu\",\"doi\":\"10.3390/cli12030034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent decades, an increase in the earth’s atmospheric temperature has been noticed due to the augmentation of the volume of gases with the greenhouse effect (GHG) released into the atmosphere. To reduce this effect, the European Union’s directives indicate the action directions for reducing these emissions, among which carbon dioxide (CO2) recorded the highest amount. In this context, the article analyzes the CO2 series reported in 1990–2021 by 30 European countries. The Kruskal-Wallis test rejected the hypothesis that the series comes from the same underlying distribution. The Anderson-Darling test rejected the normality hypothesis for seven series out of thirty, and Sen’s procedure found a decreasing trend slope only for 17 series. ARIMA models have been built for all individual series. Grouping the series (by the k-means and hierarchical clustering) provided the base for building the Regional series (RegS), which describes the CO2 pollution evolution over Europe. The advantage of this approach is to provide the synthetic image of the regional evolution of the CO2 emission volume (mt), incorporating information from 30 series (one for each country) in only one—RegS. It is also shown that selecting the number of clusters involved in building RegS and assessing their stability is essential for the model’s goodness of fit.\",\"PeriodicalId\":37615,\"journal\":{\"name\":\"Climate\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cli12030034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli12030034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Statistical Analysis and Modeling of the CO2 Series Emitted by Thirty European Countries
In recent decades, an increase in the earth’s atmospheric temperature has been noticed due to the augmentation of the volume of gases with the greenhouse effect (GHG) released into the atmosphere. To reduce this effect, the European Union’s directives indicate the action directions for reducing these emissions, among which carbon dioxide (CO2) recorded the highest amount. In this context, the article analyzes the CO2 series reported in 1990–2021 by 30 European countries. The Kruskal-Wallis test rejected the hypothesis that the series comes from the same underlying distribution. The Anderson-Darling test rejected the normality hypothesis for seven series out of thirty, and Sen’s procedure found a decreasing trend slope only for 17 series. ARIMA models have been built for all individual series. Grouping the series (by the k-means and hierarchical clustering) provided the base for building the Regional series (RegS), which describes the CO2 pollution evolution over Europe. The advantage of this approach is to provide the synthetic image of the regional evolution of the CO2 emission volume (mt), incorporating information from 30 series (one for each country) in only one—RegS. It is also shown that selecting the number of clusters involved in building RegS and assessing their stability is essential for the model’s goodness of fit.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.