{"title":"使用确定性因子法对冠状病毒疾病诊断专家系统进行性能分析","authors":"Moch Deny Pratama, Luqman Affandi, Bagas Satya Dian Nugraha","doi":"10.33795/jip.v10i2.4702","DOIUrl":null,"url":null,"abstract":"Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), atau Covid-19, merupakan penyakit virus yang sangat menular melalui kontak fisik atau sentuhan dengan benda yang telah tersentuh oleh individu terjangkit. Pandemi ini memberikan dampak besar, termasuk perubahan signifikan dalam gaya hidup sehari-hari dan pembatasan kontak sosial dengan banyak orang. Kesulitan dalam mendeteksi keberadaan penyakit ini disebabkan oleh kurangnya pemahaman masyarakat, memungkinkan penyebarannya menjadi sangat cepat. Terdapat kendala dengan adanya keterbatasan konsultasi dan fasilitas Rapid Test dan Swab Test yang belum merata dan harganya relatif mahal sehingga tidak semua orang mau melakukan pemeriksaan. Tujuan penelitian ini adalah membangun Sistem Pakar untuk melakukan diagnosis awal terhadap penyakit virus corona menggunakan Metode Certainty Factor yang mempermudah dalam memberikan hasil diagnosis, pengetahuan, serta solusi. Certainty Factor dapat bekerja dengan ketidakpastian melalui pemrosesan data untuk mengambil kesimpulan hasil diagnosis penyakit dengan persentase perhitungan nilai kepastian. Penelitian ini berfokus pada gejala klinis Covid-19, sistem ini diharapkan dapat membantu dalam mengantisipasi penyebaran virus dengan memberikan solusi yang tepat waktu. Metode Certainty Factor dipilih karena kemampuannya mengolah data yang memiliki ketidakpastian, menjaga keakuratan hasil, dan dianggap cocok untuk implementasi sistem pakar dengan input data yang tidak pasti. Penelitian ini mengusulkan solusi yang relevan dengan data kondisi beberapa gejala komorbid, agnosmia, dan ageusia untuk melakukan identifikasi penyakit menjadi dua rule kelas yaitu Suspect dan Probable Covid-19. Berdasarkan pengujian fungsionalitas secara black box, didapatkan tingkat akurasi sebesar 100%, sementara berdasarkan pengujian validitas pakar, tingkat akurasi sebesar 100%, dan pengujian validitas perhitungan memiliki tingkat akurasi uji validitas sebesar 87.5%.","PeriodicalId":232501,"journal":{"name":"Jurnal Informatika Polinema","volume":"2005 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Kinerja Sistem Pakar Diagnosis Coronavirus Disease Menggunakan Metode Certainty Factor\",\"authors\":\"Moch Deny Pratama, Luqman Affandi, Bagas Satya Dian Nugraha\",\"doi\":\"10.33795/jip.v10i2.4702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), atau Covid-19, merupakan penyakit virus yang sangat menular melalui kontak fisik atau sentuhan dengan benda yang telah tersentuh oleh individu terjangkit. Pandemi ini memberikan dampak besar, termasuk perubahan signifikan dalam gaya hidup sehari-hari dan pembatasan kontak sosial dengan banyak orang. Kesulitan dalam mendeteksi keberadaan penyakit ini disebabkan oleh kurangnya pemahaman masyarakat, memungkinkan penyebarannya menjadi sangat cepat. Terdapat kendala dengan adanya keterbatasan konsultasi dan fasilitas Rapid Test dan Swab Test yang belum merata dan harganya relatif mahal sehingga tidak semua orang mau melakukan pemeriksaan. Tujuan penelitian ini adalah membangun Sistem Pakar untuk melakukan diagnosis awal terhadap penyakit virus corona menggunakan Metode Certainty Factor yang mempermudah dalam memberikan hasil diagnosis, pengetahuan, serta solusi. Certainty Factor dapat bekerja dengan ketidakpastian melalui pemrosesan data untuk mengambil kesimpulan hasil diagnosis penyakit dengan persentase perhitungan nilai kepastian. Penelitian ini berfokus pada gejala klinis Covid-19, sistem ini diharapkan dapat membantu dalam mengantisipasi penyebaran virus dengan memberikan solusi yang tepat waktu. Metode Certainty Factor dipilih karena kemampuannya mengolah data yang memiliki ketidakpastian, menjaga keakuratan hasil, dan dianggap cocok untuk implementasi sistem pakar dengan input data yang tidak pasti. Penelitian ini mengusulkan solusi yang relevan dengan data kondisi beberapa gejala komorbid, agnosmia, dan ageusia untuk melakukan identifikasi penyakit menjadi dua rule kelas yaitu Suspect dan Probable Covid-19. Berdasarkan pengujian fungsionalitas secara black box, didapatkan tingkat akurasi sebesar 100%, sementara berdasarkan pengujian validitas pakar, tingkat akurasi sebesar 100%, dan pengujian validitas perhitungan memiliki tingkat akurasi uji validitas sebesar 87.5%.\",\"PeriodicalId\":232501,\"journal\":{\"name\":\"Jurnal Informatika Polinema\",\"volume\":\"2005 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika Polinema\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33795/jip.v10i2.4702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Polinema","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33795/jip.v10i2.4702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analisis Kinerja Sistem Pakar Diagnosis Coronavirus Disease Menggunakan Metode Certainty Factor
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), atau Covid-19, merupakan penyakit virus yang sangat menular melalui kontak fisik atau sentuhan dengan benda yang telah tersentuh oleh individu terjangkit. Pandemi ini memberikan dampak besar, termasuk perubahan signifikan dalam gaya hidup sehari-hari dan pembatasan kontak sosial dengan banyak orang. Kesulitan dalam mendeteksi keberadaan penyakit ini disebabkan oleh kurangnya pemahaman masyarakat, memungkinkan penyebarannya menjadi sangat cepat. Terdapat kendala dengan adanya keterbatasan konsultasi dan fasilitas Rapid Test dan Swab Test yang belum merata dan harganya relatif mahal sehingga tidak semua orang mau melakukan pemeriksaan. Tujuan penelitian ini adalah membangun Sistem Pakar untuk melakukan diagnosis awal terhadap penyakit virus corona menggunakan Metode Certainty Factor yang mempermudah dalam memberikan hasil diagnosis, pengetahuan, serta solusi. Certainty Factor dapat bekerja dengan ketidakpastian melalui pemrosesan data untuk mengambil kesimpulan hasil diagnosis penyakit dengan persentase perhitungan nilai kepastian. Penelitian ini berfokus pada gejala klinis Covid-19, sistem ini diharapkan dapat membantu dalam mengantisipasi penyebaran virus dengan memberikan solusi yang tepat waktu. Metode Certainty Factor dipilih karena kemampuannya mengolah data yang memiliki ketidakpastian, menjaga keakuratan hasil, dan dianggap cocok untuk implementasi sistem pakar dengan input data yang tidak pasti. Penelitian ini mengusulkan solusi yang relevan dengan data kondisi beberapa gejala komorbid, agnosmia, dan ageusia untuk melakukan identifikasi penyakit menjadi dua rule kelas yaitu Suspect dan Probable Covid-19. Berdasarkan pengujian fungsionalitas secara black box, didapatkan tingkat akurasi sebesar 100%, sementara berdasarkan pengujian validitas pakar, tingkat akurasi sebesar 100%, dan pengujian validitas perhitungan memiliki tingkat akurasi uji validitas sebesar 87.5%.