{"title":"二叉 GLMM 树与 BIMM 森林在模拟人口工作状况方面的比较","authors":"Dwi Agustin Nuraini Sirodj, Khairil Anwar Notodiputro, Bagus Sartono","doi":"10.25126/jtiik.20241117531","DOIUrl":null,"url":null,"abstract":"Model prediksi berbasis pada pohon keputusan saat ini banyak dikembangkan di berbagai bidang. Pengembangan metode yang dilakukan diantaranya memasukkan pengaruh acak ke dalam model. Generalized linier mixed model (GLMM) Tree menjadi salah satu model yang dapat mengakomodasi adanya pengaruh acak dan dilakukan dengan metode partisi rekursif hanya saja waktu komputasi yang dibutuhkan relatif lebih lama. Selanjutnya metode alternatif lainnya adalah Binary Mixed Model (BiMM) Forest yang menggabungkan prinsip kerja Bayesian GLMM dan Random Forest. Dari kedua metode yang akan digunakan maka permasalahan yang dihadapi adalah bagaimana kinerja dari metode GLMM Tree dan BiMM Forest jika diterapkan untuk klasifikasi status bekerja penduduk di Kabupaten Bogor dan Kabupaten Pangandaran. Dari hasil analisis tampak bahwa metode BiMM Forest memiliki kinerja yang lebih baik di bandingkan dengan GLMM Tree untuk kedua daerah. Selain itu ditunjukkan pula bahwa peubah yang penting dalam proses klasifikasi status bekerja penduduk di Kabupaten Bogor dan Kabupaten Pangandaran adalah peubah terkait aspek pendidikan, sosial, dan ekonomi.","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":"2004 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perbandingan Kerja Binomial GLMM Tree dan BIMM Forest untuk Memodelkan Status Bekerja Penduduk\",\"authors\":\"Dwi Agustin Nuraini Sirodj, Khairil Anwar Notodiputro, Bagus Sartono\",\"doi\":\"10.25126/jtiik.20241117531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model prediksi berbasis pada pohon keputusan saat ini banyak dikembangkan di berbagai bidang. Pengembangan metode yang dilakukan diantaranya memasukkan pengaruh acak ke dalam model. Generalized linier mixed model (GLMM) Tree menjadi salah satu model yang dapat mengakomodasi adanya pengaruh acak dan dilakukan dengan metode partisi rekursif hanya saja waktu komputasi yang dibutuhkan relatif lebih lama. Selanjutnya metode alternatif lainnya adalah Binary Mixed Model (BiMM) Forest yang menggabungkan prinsip kerja Bayesian GLMM dan Random Forest. Dari kedua metode yang akan digunakan maka permasalahan yang dihadapi adalah bagaimana kinerja dari metode GLMM Tree dan BiMM Forest jika diterapkan untuk klasifikasi status bekerja penduduk di Kabupaten Bogor dan Kabupaten Pangandaran. Dari hasil analisis tampak bahwa metode BiMM Forest memiliki kinerja yang lebih baik di bandingkan dengan GLMM Tree untuk kedua daerah. Selain itu ditunjukkan pula bahwa peubah yang penting dalam proses klasifikasi status bekerja penduduk di Kabupaten Bogor dan Kabupaten Pangandaran adalah peubah terkait aspek pendidikan, sosial, dan ekonomi.\",\"PeriodicalId\":32501,\"journal\":{\"name\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"volume\":\"2004 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Informasi dan Ilmu Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25126/jtiik.20241117531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.20241117531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perbandingan Kerja Binomial GLMM Tree dan BIMM Forest untuk Memodelkan Status Bekerja Penduduk
Model prediksi berbasis pada pohon keputusan saat ini banyak dikembangkan di berbagai bidang. Pengembangan metode yang dilakukan diantaranya memasukkan pengaruh acak ke dalam model. Generalized linier mixed model (GLMM) Tree menjadi salah satu model yang dapat mengakomodasi adanya pengaruh acak dan dilakukan dengan metode partisi rekursif hanya saja waktu komputasi yang dibutuhkan relatif lebih lama. Selanjutnya metode alternatif lainnya adalah Binary Mixed Model (BiMM) Forest yang menggabungkan prinsip kerja Bayesian GLMM dan Random Forest. Dari kedua metode yang akan digunakan maka permasalahan yang dihadapi adalah bagaimana kinerja dari metode GLMM Tree dan BiMM Forest jika diterapkan untuk klasifikasi status bekerja penduduk di Kabupaten Bogor dan Kabupaten Pangandaran. Dari hasil analisis tampak bahwa metode BiMM Forest memiliki kinerja yang lebih baik di bandingkan dengan GLMM Tree untuk kedua daerah. Selain itu ditunjukkan pula bahwa peubah yang penting dalam proses klasifikasi status bekerja penduduk di Kabupaten Bogor dan Kabupaten Pangandaran adalah peubah terkait aspek pendidikan, sosial, dan ekonomi.