原子探测断层扫描揭示出海齿中纳米级有机残留物

IF 3.4 2区 化学 Q1 SPECTROSCOPY
Fan Gao, Jing Xue, Rong Hu, Xian-Hua Li, Qiu-Li Li
{"title":"原子探测断层扫描揭示出海齿中纳米级有机残留物","authors":"Fan Gao, Jing Xue, Rong Hu, Xian-Hua Li, Qiu-Li Li","doi":"10.46770/as.2024.026","DOIUrl":null,"url":null,"abstract":": Distinguishing biomineralized minerals from inorganic minerals has been a longstanding challenge. The organic matter within biomineralized minerals constitutes compelling evidence that sets them apart from inorganic minerals. However, for small samples that have undergone degradation and diagenetic alteration, routine analytical technologies have difficulties in identifying internal residual organic signals. Atom Probe Tomography, as the highest-spatial-resolution microanalytical technique, facilitates the study of elements spatial distribution and nano-scale structures, holding significant potential for applications in biogeochemistry. In this study, Atom Probe Tomography has been applied to fossil samples for the first time, comparing inorganic Durango apatite with fossil conodont. This research discovered residual organic components within conodont, manifesting in the form of nano-scale particles coupled with high carbon and nitrogen concentrations. This signal is promising for differentiating between biominerals and inorganic minerals, which is greatly potential for identifying nano-scale biosignatures in ancient samples.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":"22 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atom Probe Tomography Reveals Nano-Scale Organic Remaining In Conodont\",\"authors\":\"Fan Gao, Jing Xue, Rong Hu, Xian-Hua Li, Qiu-Li Li\",\"doi\":\"10.46770/as.2024.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Distinguishing biomineralized minerals from inorganic minerals has been a longstanding challenge. The organic matter within biomineralized minerals constitutes compelling evidence that sets them apart from inorganic minerals. However, for small samples that have undergone degradation and diagenetic alteration, routine analytical technologies have difficulties in identifying internal residual organic signals. Atom Probe Tomography, as the highest-spatial-resolution microanalytical technique, facilitates the study of elements spatial distribution and nano-scale structures, holding significant potential for applications in biogeochemistry. In this study, Atom Probe Tomography has been applied to fossil samples for the first time, comparing inorganic Durango apatite with fossil conodont. This research discovered residual organic components within conodont, manifesting in the form of nano-scale particles coupled with high carbon and nitrogen concentrations. This signal is promising for differentiating between biominerals and inorganic minerals, which is greatly potential for identifying nano-scale biosignatures in ancient samples.\",\"PeriodicalId\":8642,\"journal\":{\"name\":\"Atomic Spectroscopy\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46770/as.2024.026\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2024.026","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

:将生物矿化矿物与无机矿物区分开来是一项长期的挑战。生物矿化矿物中的有机物是将它们与无机矿物区分开来的有力证据。然而,对于经过降解和成岩蚀变的小样本,常规分析技术很难识别内部残留的有机信号。原子探针层析技术作为空间分辨率最高的微分析技术,有助于研究元素的空间分布和纳米尺度结构,在生物地球化学领域具有巨大的应用潜力。在这项研究中,原子探针层析技术首次应用于化石样本,比较了无机杜兰戈磷灰石和化石海螺。这项研究发现了海螺体内残留的有机成分,其表现形式为纳米级颗粒以及高浓度的碳和氮。这一信号有望区分生物矿物和无机矿物,这对于识别古样本中的纳米级生物特征具有极大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atom Probe Tomography Reveals Nano-Scale Organic Remaining In Conodont
: Distinguishing biomineralized minerals from inorganic minerals has been a longstanding challenge. The organic matter within biomineralized minerals constitutes compelling evidence that sets them apart from inorganic minerals. However, for small samples that have undergone degradation and diagenetic alteration, routine analytical technologies have difficulties in identifying internal residual organic signals. Atom Probe Tomography, as the highest-spatial-resolution microanalytical technique, facilitates the study of elements spatial distribution and nano-scale structures, holding significant potential for applications in biogeochemistry. In this study, Atom Probe Tomography has been applied to fossil samples for the first time, comparing inorganic Durango apatite with fossil conodont. This research discovered residual organic components within conodont, manifesting in the form of nano-scale particles coupled with high carbon and nitrogen concentrations. This signal is promising for differentiating between biominerals and inorganic minerals, which is greatly potential for identifying nano-scale biosignatures in ancient samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atomic Spectroscopy
Atomic Spectroscopy 物理-光谱学
CiteScore
5.30
自引率
14.70%
发文量
42
审稿时长
4.5 months
期刊介绍: The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信