Meshach Osaretin, Sylvester Onyemaechi Edelugo, Patrick Udeme Akpan, C. Agbo, P. Ozor, N.I. Sukdeo
{"title":"电子玻璃纤维增强聚酯复合材料的应力强度因子","authors":"Meshach Osaretin, Sylvester Onyemaechi Edelugo, Patrick Udeme Akpan, C. Agbo, P. Ozor, N.I. Sukdeo","doi":"10.4028/p-nld6we","DOIUrl":null,"url":null,"abstract":"In order to analyze the stress concentration impact, intensity close to the zone of the crack tip, this work examines the in-plane SIF(SIF) of composite plates utilizing measured crack tip opening displacement (CTOD). The test specimens' E-glass fiber mats were arranged in various ply configurations. The ASTM standards utilized for researching mode I fracture of composite materials served as the foundation for the compact tension (CT) specimen. The mode I, KI Stress intensity factor (SIF), and critical stress, c, were calculated for each specimen along the fracture length propagation based on the experiments. It was found that the SIF is directly proportional with fracture length, or a/W, for all E-glass fiber laminate cases tested. The KIC is often higher in thinner laminates. The presence of woven roving increases the SIF and hence the toughness of the laminate.","PeriodicalId":507742,"journal":{"name":"Materials Science Forum","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress Intensity Factor of E-Glass Fiber Reinforced Polyester Composites\",\"authors\":\"Meshach Osaretin, Sylvester Onyemaechi Edelugo, Patrick Udeme Akpan, C. Agbo, P. Ozor, N.I. Sukdeo\",\"doi\":\"10.4028/p-nld6we\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to analyze the stress concentration impact, intensity close to the zone of the crack tip, this work examines the in-plane SIF(SIF) of composite plates utilizing measured crack tip opening displacement (CTOD). The test specimens' E-glass fiber mats were arranged in various ply configurations. The ASTM standards utilized for researching mode I fracture of composite materials served as the foundation for the compact tension (CT) specimen. The mode I, KI Stress intensity factor (SIF), and critical stress, c, were calculated for each specimen along the fracture length propagation based on the experiments. It was found that the SIF is directly proportional with fracture length, or a/W, for all E-glass fiber laminate cases tested. The KIC is often higher in thinner laminates. The presence of woven roving increases the SIF and hence the toughness of the laminate.\",\"PeriodicalId\":507742,\"journal\":{\"name\":\"Materials Science Forum\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-nld6we\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-nld6we","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
为了分析应力集中对裂纹尖端附近区域的影响和强度,本研究利用测量的裂纹尖端张开位移(CTOD)对复合材料板的面内 SIF(SIF)进行了研究。试样的 E 玻璃纤维毡以不同的层状结构排列。用于研究复合材料 I 型断裂的 ASTM 标准是紧凑拉伸 (CT) 试样的基础。根据实验结果,计算了每个试样沿断裂长度方向的模式 I、KI 应力强度因子(SIF)和临界应力 c。结果发现,在所有测试的 E 玻璃纤维层压板中,SIF 与断裂长度(或 a/W)成正比。较薄的层压板的 KIC 通常较高。编织粗纱的存在增加了 SIF,从而提高了层压板的韧性。
Stress Intensity Factor of E-Glass Fiber Reinforced Polyester Composites
In order to analyze the stress concentration impact, intensity close to the zone of the crack tip, this work examines the in-plane SIF(SIF) of composite plates utilizing measured crack tip opening displacement (CTOD). The test specimens' E-glass fiber mats were arranged in various ply configurations. The ASTM standards utilized for researching mode I fracture of composite materials served as the foundation for the compact tension (CT) specimen. The mode I, KI Stress intensity factor (SIF), and critical stress, c, were calculated for each specimen along the fracture length propagation based on the experiments. It was found that the SIF is directly proportional with fracture length, or a/W, for all E-glass fiber laminate cases tested. The KIC is often higher in thinner laminates. The presence of woven roving increases the SIF and hence the toughness of the laminate.