氧化铁(III)柱状 Na-Montmorillonite 上的二氧化碳吸附作用

IF 0.7 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Muhammad Nauval Farras Russamsi, Firman Joshua Nainggolan, Triati Dewi Kencana Wungu, S. Suprijadi
{"title":"氧化铁(III)柱状 Na-Montmorillonite 上的二氧化碳吸附作用","authors":"Muhammad Nauval Farras Russamsi, Firman Joshua Nainggolan, Triati Dewi Kencana Wungu, S. Suprijadi","doi":"10.17576/jsm-2024-5302-14","DOIUrl":null,"url":null,"abstract":"Iron (III) oxide (Fe2O3) pillarized Na-montmorillonite (NaMMT) was prepared by ion-exchanging and calcining three different concentrations (0.025, 0.05, and 0.075 M) of Fe(OH)3 with NaMMT. The obtained materials were then examined for its ability to capture carbon dioxide, using thermogravimetric methods. The structural, compositional, and textural changes caused by pillarization were also examined using XRD, XRF, FTIR, and BET-BJH. The results showed that NaMMT-0.025 (pillared using 0.025 M of Fe(OH)3) and NaMMT-0.075 exhibit superior adsorption capacity compared to NaMMT, with NaMMT-0.025 having the greatest capacity. By contrast, NaMMT-0.05 registers a decrease in the amount of CO2 adsorbed, compared to NaMMT. Using XRF, it was shown that the amount of Fe2O3 present in the samples correspond to the concentration of Fe(OH)3 used in ion-exchange. XRD results shows that the interlayer space of NaMMT barely changed after addition of Fe2O3. Using FTIR, successful pillarization of Fe2O3 is confirmed, and by combining it with BET-BJH, it shows that addition of Fe2O3 could enhance carbon capture by creating favourable pore structures. Overall, it shows that adding an appropriate amount of Fe2O3 to montmorillonite will enhance CO2 adsorption.","PeriodicalId":21366,"journal":{"name":"Sains Malaysiana","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Dioxide Adsorption on Iron (III) Oxide Pillarized Na-Montmorillonite\",\"authors\":\"Muhammad Nauval Farras Russamsi, Firman Joshua Nainggolan, Triati Dewi Kencana Wungu, S. Suprijadi\",\"doi\":\"10.17576/jsm-2024-5302-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron (III) oxide (Fe2O3) pillarized Na-montmorillonite (NaMMT) was prepared by ion-exchanging and calcining three different concentrations (0.025, 0.05, and 0.075 M) of Fe(OH)3 with NaMMT. The obtained materials were then examined for its ability to capture carbon dioxide, using thermogravimetric methods. The structural, compositional, and textural changes caused by pillarization were also examined using XRD, XRF, FTIR, and BET-BJH. The results showed that NaMMT-0.025 (pillared using 0.025 M of Fe(OH)3) and NaMMT-0.075 exhibit superior adsorption capacity compared to NaMMT, with NaMMT-0.025 having the greatest capacity. By contrast, NaMMT-0.05 registers a decrease in the amount of CO2 adsorbed, compared to NaMMT. Using XRF, it was shown that the amount of Fe2O3 present in the samples correspond to the concentration of Fe(OH)3 used in ion-exchange. XRD results shows that the interlayer space of NaMMT barely changed after addition of Fe2O3. Using FTIR, successful pillarization of Fe2O3 is confirmed, and by combining it with BET-BJH, it shows that addition of Fe2O3 could enhance carbon capture by creating favourable pore structures. Overall, it shows that adding an appropriate amount of Fe2O3 to montmorillonite will enhance CO2 adsorption.\",\"PeriodicalId\":21366,\"journal\":{\"name\":\"Sains Malaysiana\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sains Malaysiana\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.17576/jsm-2024-5302-14\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sains Malaysiana","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.17576/jsm-2024-5302-14","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过离子交换和煅烧三种不同浓度(0.025、0.05 和 0.075 M)的 Fe(OH)3,制备了氧化铁(III)(Fe2O3)柱化 Na-蒙脱石(NaMMT)。然后使用热重法检测了所获得材料捕获二氧化碳的能力。此外,还使用 XRD、XRF、FTIR 和 BET-BJH 对柱化引起的结构、成分和纹理变化进行了研究。结果表明,与 NaMMT 相比,NaMMT-0.025(使用 0.025 M 的 Fe(OH)3)和 NaMMT-0.075 具有更强的吸附能力,其中 NaMMT-0.025 的吸附能力最强。相比之下,与 NaMMT 相比,NaMMT-0.05 的二氧化碳吸附量有所下降。XRF 显示,样品中的 Fe2O3 含量与离子交换中使用的 Fe(OH)3 浓度一致。XRD 结果表明,加入 Fe2O3 后,NaMMT 的层间空间几乎没有变化。傅立叶变换红外光谱证实了 Fe2O3 的成功柱化,结合 BET-BJH,表明添加 Fe2O3 可通过创建有利的孔隙结构来提高碳捕集能力。总之,这表明在蒙脱石中加入适量的 Fe2O3 可增强对二氧化碳的吸附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon Dioxide Adsorption on Iron (III) Oxide Pillarized Na-Montmorillonite
Iron (III) oxide (Fe2O3) pillarized Na-montmorillonite (NaMMT) was prepared by ion-exchanging and calcining three different concentrations (0.025, 0.05, and 0.075 M) of Fe(OH)3 with NaMMT. The obtained materials were then examined for its ability to capture carbon dioxide, using thermogravimetric methods. The structural, compositional, and textural changes caused by pillarization were also examined using XRD, XRF, FTIR, and BET-BJH. The results showed that NaMMT-0.025 (pillared using 0.025 M of Fe(OH)3) and NaMMT-0.075 exhibit superior adsorption capacity compared to NaMMT, with NaMMT-0.025 having the greatest capacity. By contrast, NaMMT-0.05 registers a decrease in the amount of CO2 adsorbed, compared to NaMMT. Using XRF, it was shown that the amount of Fe2O3 present in the samples correspond to the concentration of Fe(OH)3 used in ion-exchange. XRD results shows that the interlayer space of NaMMT barely changed after addition of Fe2O3. Using FTIR, successful pillarization of Fe2O3 is confirmed, and by combining it with BET-BJH, it shows that addition of Fe2O3 could enhance carbon capture by creating favourable pore structures. Overall, it shows that adding an appropriate amount of Fe2O3 to montmorillonite will enhance CO2 adsorption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sains Malaysiana
Sains Malaysiana MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
12.50%
发文量
196
审稿时长
3-6 weeks
期刊介绍: Sains Malaysiana is a refereed journal committed to the advancement of scholarly knowledge and research findings of the several branches of science and technology. It contains articles on Earth Sciences, Health Sciences, Life Sciences, Mathematical Sciences and Physical Sciences. The journal publishes articles, reviews, and research notes whose content and approach are of interest to a wide range of scholars. Sains Malaysiana is published by the UKM Press an its autonomous Editorial Board are drawn from the Faculty of Science and Technology, Universiti Kebangsaan Malaysia. In addition, distinguished scholars from local and foreign universities are appointed to serve as advisory board members and referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信