浅水中的局部暗波:扩展的布森斯克系统内的分析

Zhengping Yang, W. Zhong, Milivoj R. Belić
{"title":"浅水中的局部暗波:扩展的布森斯克系统内的分析","authors":"Zhengping Yang, W. Zhong, Milivoj R. Belić","doi":"10.1088/0256-307x/41/4/044201","DOIUrl":null,"url":null,"abstract":"\n This article studies dark localized waves within a nonlinear system based on the Boussinesq approximation, describing the dynamics of shallow water waves. Employing symbolic calculus, we apply the Hirota bilinear method to transform an extended Boussinesq system into a bilinear form, and then use the multiple rogue wave method to obtain its dark rational solutions. Exploring the first- and second-order dark solutions, we examine the conditions under which these localized solutions exist and their spatiotemporal distributions. Through the selection of various parameters and by utilizing different visualization techniques (intensity distributions and contour plots), we explore the dynamical properties of dark solutions found, in particular the first- and second-order dark rogue waves. We also explore the methods of their control. The findings presented here not only deepen the understanding of physical phenomena described by the (1+1)-dimensional Boussinesq equation but also expand avenues for further research. Our method can be extended to other nonlinear systems, to conceivably obtain higher-order dark rogue waves.","PeriodicalId":505209,"journal":{"name":"Chinese Physics Letters","volume":"18 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dark localized waves in shallow waters: An analysis within an extended Boussinesq system\",\"authors\":\"Zhengping Yang, W. Zhong, Milivoj R. Belić\",\"doi\":\"10.1088/0256-307x/41/4/044201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article studies dark localized waves within a nonlinear system based on the Boussinesq approximation, describing the dynamics of shallow water waves. Employing symbolic calculus, we apply the Hirota bilinear method to transform an extended Boussinesq system into a bilinear form, and then use the multiple rogue wave method to obtain its dark rational solutions. Exploring the first- and second-order dark solutions, we examine the conditions under which these localized solutions exist and their spatiotemporal distributions. Through the selection of various parameters and by utilizing different visualization techniques (intensity distributions and contour plots), we explore the dynamical properties of dark solutions found, in particular the first- and second-order dark rogue waves. We also explore the methods of their control. The findings presented here not only deepen the understanding of physical phenomena described by the (1+1)-dimensional Boussinesq equation but also expand avenues for further research. Our method can be extended to other nonlinear systems, to conceivably obtain higher-order dark rogue waves.\",\"PeriodicalId\":505209,\"journal\":{\"name\":\"Chinese Physics Letters\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0256-307x/41/4/044201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/4/044201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于布辛斯基近似的非线性系统中的暗局部波,该系统描述了浅水波的动力学。通过符号微积分,我们应用 Hirota 双线性方法将扩展的 Boussinesq 系统转换为双线性形式,然后使用多重流氓波方法获得其暗有理解。在探索一阶和二阶暗解的过程中,我们研究了这些局部解存在的条件及其时空分布。通过选择各种参数和利用不同的可视化技术(强度分布和等值线图),我们探索了所发现的暗解的动力学特性,特别是一阶和二阶暗无赖波。我们还探索了控制它们的方法。这里介绍的发现不仅加深了人们对 (1+1)-dimensional Boussinesq 方程所描述的物理现象的理解,还为进一步的研究拓展了途径。我们的方法可以扩展到其他非线性系统,从而获得更高阶的暗无赖波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dark localized waves in shallow waters: An analysis within an extended Boussinesq system
This article studies dark localized waves within a nonlinear system based on the Boussinesq approximation, describing the dynamics of shallow water waves. Employing symbolic calculus, we apply the Hirota bilinear method to transform an extended Boussinesq system into a bilinear form, and then use the multiple rogue wave method to obtain its dark rational solutions. Exploring the first- and second-order dark solutions, we examine the conditions under which these localized solutions exist and their spatiotemporal distributions. Through the selection of various parameters and by utilizing different visualization techniques (intensity distributions and contour plots), we explore the dynamical properties of dark solutions found, in particular the first- and second-order dark rogue waves. We also explore the methods of their control. The findings presented here not only deepen the understanding of physical phenomena described by the (1+1)-dimensional Boussinesq equation but also expand avenues for further research. Our method can be extended to other nonlinear systems, to conceivably obtain higher-order dark rogue waves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信