Wilda Imama Sabilla, Muhammad Adisa Putra Perkasa, D. Wibowo
{"title":"采用 Naive Bayes 方法的鲜肉质量检测系统","authors":"Wilda Imama Sabilla, Muhammad Adisa Putra Perkasa, D. Wibowo","doi":"10.33795/jip.v10i2.5006","DOIUrl":null,"url":null,"abstract":"Daging sapi merupakan salah satu sumber protein yang banyak dikonsumsi masyarakat Indonesia. Daging banyak dijual baik di pasar tradisional maupun pasar modern. Beberapa penjual yang tidak jujur mencampur daging segar dan tidak segar pada produknya untuk mendapatkan keuntungan lebih. Sebagian konsumen akhirnya mendapatkan daging yang kurang segar karena tidak semua konsumen memiliki pengetahuan mengenai kesegaran daging. Penelitian ini mengembangkan sistem pendeteksi kualitas daging untuk membantu pengguna yang tidak memahami tingkat kesegaran daging. Di samping itu keterbatasan mata manusia memungkinkan kesalahan dalam menentukan daging merupakan daging segar atau tidak segar. Aplikasi yang dibuat akan mendeteksi kesegaran daging melalui warna dan tekstur daging, Data yang digunakan pada penelitian ini adalah citra daging sapi segar dan tidak segar yang diperoleh dari berbagai sumber. Metode pengolahan data meliputi praproses citra dilanjutkan dengan ekstraksi fitur. Fitur yang digunakan adalah fitur warna melalui perhitungan HIS serta fitur tekstur menggunakan metode Gray-Level Co-occurrence Matrix (GLCM). Fitur warna dan tekstur tersebut selanjutnya diklasifikasikan ke dalam daging segar atau tidak segar menggunakan metode Naïve Bayes. Berdasarkan hasil pengujian, diperoleh nilai akurasi sebesar 92%. Penelitian ini diharapkan dapat memberikan kontribusi dalam pengembangan sistem untuk mendeteksi kualitas daging segar dan dapat membantu menginformasikan tentang kualitas daging bagi pengguna yang tidak memiliki pengetahuan tentang kesegaran daging.","PeriodicalId":232501,"journal":{"name":"Jurnal Informatika Polinema","volume":"35 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sistem Pendeteksi Kualitas Daging Segar dengan Metode Naive Bayes\",\"authors\":\"Wilda Imama Sabilla, Muhammad Adisa Putra Perkasa, D. Wibowo\",\"doi\":\"10.33795/jip.v10i2.5006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Daging sapi merupakan salah satu sumber protein yang banyak dikonsumsi masyarakat Indonesia. Daging banyak dijual baik di pasar tradisional maupun pasar modern. Beberapa penjual yang tidak jujur mencampur daging segar dan tidak segar pada produknya untuk mendapatkan keuntungan lebih. Sebagian konsumen akhirnya mendapatkan daging yang kurang segar karena tidak semua konsumen memiliki pengetahuan mengenai kesegaran daging. Penelitian ini mengembangkan sistem pendeteksi kualitas daging untuk membantu pengguna yang tidak memahami tingkat kesegaran daging. Di samping itu keterbatasan mata manusia memungkinkan kesalahan dalam menentukan daging merupakan daging segar atau tidak segar. Aplikasi yang dibuat akan mendeteksi kesegaran daging melalui warna dan tekstur daging, Data yang digunakan pada penelitian ini adalah citra daging sapi segar dan tidak segar yang diperoleh dari berbagai sumber. Metode pengolahan data meliputi praproses citra dilanjutkan dengan ekstraksi fitur. Fitur yang digunakan adalah fitur warna melalui perhitungan HIS serta fitur tekstur menggunakan metode Gray-Level Co-occurrence Matrix (GLCM). Fitur warna dan tekstur tersebut selanjutnya diklasifikasikan ke dalam daging segar atau tidak segar menggunakan metode Naïve Bayes. Berdasarkan hasil pengujian, diperoleh nilai akurasi sebesar 92%. Penelitian ini diharapkan dapat memberikan kontribusi dalam pengembangan sistem untuk mendeteksi kualitas daging segar dan dapat membantu menginformasikan tentang kualitas daging bagi pengguna yang tidak memiliki pengetahuan tentang kesegaran daging.\",\"PeriodicalId\":232501,\"journal\":{\"name\":\"Jurnal Informatika Polinema\",\"volume\":\"35 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika Polinema\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33795/jip.v10i2.5006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Polinema","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33795/jip.v10i2.5006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
牛肉是印尼人广泛食用的蛋白质来源。肉类在传统市场和现代市场都有广泛销售。一些不诚实的销售商为了获得更多利润,会在产品中混入新鲜和不新鲜的肉类。由于并非所有消费者都了解肉类的新鲜度,一些消费者最终买到的肉不新鲜。这项研究开发了一种肉类质量检测系统,以帮助不了解肉类新鲜度的用户。此外,由于人眼的局限性,在判断肉类是否新鲜时会出现误差。所创建的应用程序将通过肉的颜色和纹理来检测肉的新鲜程度。 本研究使用的数据是从不同来源获取的新鲜和不新鲜牛肉图像。数据处理方法包括图像预处理和特征提取。使用的特征是通过 HIS 计算得出的颜色特征和使用灰度共现矩阵 (GLCM) 方法得出的纹理特征。然后使用 Naïve Bayes 方法将颜色和纹理特征分为新鲜肉和不新鲜肉。根据测试结果,准确率达到 92%。这项研究有望为开发检测鲜肉质量的系统做出贡献,并有助于向不了解肉类新鲜度的用户提供有关肉类质量的信息。
Sistem Pendeteksi Kualitas Daging Segar dengan Metode Naive Bayes
Daging sapi merupakan salah satu sumber protein yang banyak dikonsumsi masyarakat Indonesia. Daging banyak dijual baik di pasar tradisional maupun pasar modern. Beberapa penjual yang tidak jujur mencampur daging segar dan tidak segar pada produknya untuk mendapatkan keuntungan lebih. Sebagian konsumen akhirnya mendapatkan daging yang kurang segar karena tidak semua konsumen memiliki pengetahuan mengenai kesegaran daging. Penelitian ini mengembangkan sistem pendeteksi kualitas daging untuk membantu pengguna yang tidak memahami tingkat kesegaran daging. Di samping itu keterbatasan mata manusia memungkinkan kesalahan dalam menentukan daging merupakan daging segar atau tidak segar. Aplikasi yang dibuat akan mendeteksi kesegaran daging melalui warna dan tekstur daging, Data yang digunakan pada penelitian ini adalah citra daging sapi segar dan tidak segar yang diperoleh dari berbagai sumber. Metode pengolahan data meliputi praproses citra dilanjutkan dengan ekstraksi fitur. Fitur yang digunakan adalah fitur warna melalui perhitungan HIS serta fitur tekstur menggunakan metode Gray-Level Co-occurrence Matrix (GLCM). Fitur warna dan tekstur tersebut selanjutnya diklasifikasikan ke dalam daging segar atau tidak segar menggunakan metode Naïve Bayes. Berdasarkan hasil pengujian, diperoleh nilai akurasi sebesar 92%. Penelitian ini diharapkan dapat memberikan kontribusi dalam pengembangan sistem untuk mendeteksi kualitas daging segar dan dapat membantu menginformasikan tentang kualitas daging bagi pengguna yang tidak memiliki pengetahuan tentang kesegaran daging.