{"title":"Al2O3 和 SiO2 的微纳米颗粒对环氧树脂绝缘体电树抑制作用的影响","authors":"Mituna Foitong, A. Suksri","doi":"10.4028/p-2fxrkw","DOIUrl":null,"url":null,"abstract":"Electrical tree is a topic that has been extensively studied in recent years. Electrical tree is considered a deterioration of the electrical insulator due to the high voltage field's distortion. Solid insulating materials used in high voltage applications, such as epoxy resin are widely employed due to their high dielectric strength and excellent mechanical properties. This research studies the effect of micro and nanoparticles of Al2O3 and SiO2 on electrical tree inhibition in epoxy resin insulators. Electrical tree inhibition is achieved by incorporating micro and nanoparticles into the polymer material, which possess different properties. Following ASTM D 3756-97, the experiment is conducted with a constant 22 kV voltage and frequency of 50 Hz. Both Al2O3 and SiO2 possess the ability to inhibit the growth of the electrical tree. Experimental results revealed that the addition of Al2O3 and SiO2 to the epoxy resin affected the formation of electric trees. As the quantity of filler increases, fewer electric trees are produced. Additionally, It has an effect on the initial formation time of electric trees. The initial time of the electric tree with the addition of micro/nano(1/3) Al2O3 additives at a ratio of 0.1 wt% was 3.5 times longer when compare with pure epoxy resin.","PeriodicalId":507742,"journal":{"name":"Materials Science Forum","volume":"13 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Micro and Nano Particles of Al2O3 and SiO2 on Electrical Tree Inhibition in Epoxy Resin Insulator\",\"authors\":\"Mituna Foitong, A. Suksri\",\"doi\":\"10.4028/p-2fxrkw\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical tree is a topic that has been extensively studied in recent years. Electrical tree is considered a deterioration of the electrical insulator due to the high voltage field's distortion. Solid insulating materials used in high voltage applications, such as epoxy resin are widely employed due to their high dielectric strength and excellent mechanical properties. This research studies the effect of micro and nanoparticles of Al2O3 and SiO2 on electrical tree inhibition in epoxy resin insulators. Electrical tree inhibition is achieved by incorporating micro and nanoparticles into the polymer material, which possess different properties. Following ASTM D 3756-97, the experiment is conducted with a constant 22 kV voltage and frequency of 50 Hz. Both Al2O3 and SiO2 possess the ability to inhibit the growth of the electrical tree. Experimental results revealed that the addition of Al2O3 and SiO2 to the epoxy resin affected the formation of electric trees. As the quantity of filler increases, fewer electric trees are produced. Additionally, It has an effect on the initial formation time of electric trees. The initial time of the electric tree with the addition of micro/nano(1/3) Al2O3 additives at a ratio of 0.1 wt% was 3.5 times longer when compare with pure epoxy resin.\",\"PeriodicalId\":507742,\"journal\":{\"name\":\"Materials Science Forum\",\"volume\":\"13 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-2fxrkw\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-2fxrkw","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Micro and Nano Particles of Al2O3 and SiO2 on Electrical Tree Inhibition in Epoxy Resin Insulator
Electrical tree is a topic that has been extensively studied in recent years. Electrical tree is considered a deterioration of the electrical insulator due to the high voltage field's distortion. Solid insulating materials used in high voltage applications, such as epoxy resin are widely employed due to their high dielectric strength and excellent mechanical properties. This research studies the effect of micro and nanoparticles of Al2O3 and SiO2 on electrical tree inhibition in epoxy resin insulators. Electrical tree inhibition is achieved by incorporating micro and nanoparticles into the polymer material, which possess different properties. Following ASTM D 3756-97, the experiment is conducted with a constant 22 kV voltage and frequency of 50 Hz. Both Al2O3 and SiO2 possess the ability to inhibit the growth of the electrical tree. Experimental results revealed that the addition of Al2O3 and SiO2 to the epoxy resin affected the formation of electric trees. As the quantity of filler increases, fewer electric trees are produced. Additionally, It has an effect on the initial formation time of electric trees. The initial time of the electric tree with the addition of micro/nano(1/3) Al2O3 additives at a ratio of 0.1 wt% was 3.5 times longer when compare with pure epoxy resin.