B. Ratov, A. K. Sudakov, B. V. Fedorov, I. A. Ruslyakova-Kupriyanova, P. S. Sundetova
{"title":"改进 PDC 凿岩机预期钻孔速度的计算方法","authors":"B. Ratov, A. K. Sudakov, B. V. Fedorov, I. A. Ruslyakova-Kupriyanova, P. S. Sundetova","doi":"10.33271/nvngu/2024-1/026","DOIUrl":null,"url":null,"abstract":"Purpose. Determination of the dependence of the depth of penetration of the PDC cutter into the bottom hole rock, taking into account its geometric parameters and spatial placement in relation to the destroyed array. Methodology. The tasks were solved by a comprehensive research method, including analysis and generalization of literary and patent sources, conducting theoretical research, which consists in solving the theoretical problem of the impact of a superhard circular cutter on an elastically fragile mountain range, using computer and mathematical modeling methods. Findings. A simplified expression has been obtained that allows taking into account the features of the PDC cutter with sufficient accuracy for engineering calculations when determining the depth of its penetration into the bottom hole rock. A method is proposed for calculating the depth of fracture in one revolution of a diamond carbide cutter PDC into the rock of the bottom of the well. The patterns of destruction by the proposed diamond-hard-alloy PDC chisel of a rock mass at the bottom of the well from the parameters of the drilling regime and the hardness of the drilled rocks have been established. Originality. For the first time, the dependence has been obtained of the influence of the geometric parameters of the shape of a single diamond-carbide PDC cutter and its spatial placement in the body of the bit matrix on the magnitude of the technological parameters of drilling a well, and their effect on the nature of the destruction of the array PDC cutter. Practical value. A technique for determining the depth of penetration of a single PDC cutter is proposed, the use of which will allow predicting the mechanical speed, depending on the geological and technical conditions of drilling wells. And taking into account the abrasive properties of rocks, it is possible to reduce the wear of the bits, and therefore the amount of necessary rock-crushing tools for the entire volume of drilling operations during the construction of the well.","PeriodicalId":19101,"journal":{"name":"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu","volume":"22 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of the methodology for calculating the expected drilling speed with PDC chisels\",\"authors\":\"B. Ratov, A. K. Sudakov, B. V. Fedorov, I. A. Ruslyakova-Kupriyanova, P. S. Sundetova\",\"doi\":\"10.33271/nvngu/2024-1/026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. Determination of the dependence of the depth of penetration of the PDC cutter into the bottom hole rock, taking into account its geometric parameters and spatial placement in relation to the destroyed array. Methodology. The tasks were solved by a comprehensive research method, including analysis and generalization of literary and patent sources, conducting theoretical research, which consists in solving the theoretical problem of the impact of a superhard circular cutter on an elastically fragile mountain range, using computer and mathematical modeling methods. Findings. A simplified expression has been obtained that allows taking into account the features of the PDC cutter with sufficient accuracy for engineering calculations when determining the depth of its penetration into the bottom hole rock. A method is proposed for calculating the depth of fracture in one revolution of a diamond carbide cutter PDC into the rock of the bottom of the well. The patterns of destruction by the proposed diamond-hard-alloy PDC chisel of a rock mass at the bottom of the well from the parameters of the drilling regime and the hardness of the drilled rocks have been established. Originality. For the first time, the dependence has been obtained of the influence of the geometric parameters of the shape of a single diamond-carbide PDC cutter and its spatial placement in the body of the bit matrix on the magnitude of the technological parameters of drilling a well, and their effect on the nature of the destruction of the array PDC cutter. Practical value. A technique for determining the depth of penetration of a single PDC cutter is proposed, the use of which will allow predicting the mechanical speed, depending on the geological and technical conditions of drilling wells. And taking into account the abrasive properties of rocks, it is possible to reduce the wear of the bits, and therefore the amount of necessary rock-crushing tools for the entire volume of drilling operations during the construction of the well.\",\"PeriodicalId\":19101,\"journal\":{\"name\":\"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu\",\"volume\":\"22 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/nvngu/2024-1/026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/nvngu/2024-1/026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Improvement of the methodology for calculating the expected drilling speed with PDC chisels
Purpose. Determination of the dependence of the depth of penetration of the PDC cutter into the bottom hole rock, taking into account its geometric parameters and spatial placement in relation to the destroyed array. Methodology. The tasks were solved by a comprehensive research method, including analysis and generalization of literary and patent sources, conducting theoretical research, which consists in solving the theoretical problem of the impact of a superhard circular cutter on an elastically fragile mountain range, using computer and mathematical modeling methods. Findings. A simplified expression has been obtained that allows taking into account the features of the PDC cutter with sufficient accuracy for engineering calculations when determining the depth of its penetration into the bottom hole rock. A method is proposed for calculating the depth of fracture in one revolution of a diamond carbide cutter PDC into the rock of the bottom of the well. The patterns of destruction by the proposed diamond-hard-alloy PDC chisel of a rock mass at the bottom of the well from the parameters of the drilling regime and the hardness of the drilled rocks have been established. Originality. For the first time, the dependence has been obtained of the influence of the geometric parameters of the shape of a single diamond-carbide PDC cutter and its spatial placement in the body of the bit matrix on the magnitude of the technological parameters of drilling a well, and their effect on the nature of the destruction of the array PDC cutter. Practical value. A technique for determining the depth of penetration of a single PDC cutter is proposed, the use of which will allow predicting the mechanical speed, depending on the geological and technical conditions of drilling wells. And taking into account the abrasive properties of rocks, it is possible to reduce the wear of the bits, and therefore the amount of necessary rock-crushing tools for the entire volume of drilling operations during the construction of the well.