{"title":"基于开关电感的开关电容器超增益升压转换器:分析与设计","authors":"Neyyala Raju, N. M. Mohan, Vijay Kumar","doi":"10.32397/tesea.vol5.n1.549","DOIUrl":null,"url":null,"abstract":"A feature known as high-voltage gain conversion is necessary for a number of applications, including photovoltaic (PV) connected systems, UPS, SMPS, and some inverter applications, specifically for the power processing of low-voltage renewable sources. This article makes a suggestion for an ultra-gain boost converter based on a switched-inductor switched-capacitor (SISC) network. Ultra-voltage gain (> 15) and lower voltage stresses across the switches are the main benefits of the proposed converter. Additionally, compared with other high-gain topologies, the number of components decreases. This paper presents a systematic analysis of the proposed ultra-gain boost DC–DC converter along with a comparison to other topologies that have been previously published in the literature. The simulation model confirmed that the efficiency of the proposed topology is 95.23%.","PeriodicalId":505929,"journal":{"name":"Transactions on Energy Systems and Engineering Applications","volume":"25 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A switched-inductor switched-capacitor based ultra-gain boost converter: analysis and design\",\"authors\":\"Neyyala Raju, N. M. Mohan, Vijay Kumar\",\"doi\":\"10.32397/tesea.vol5.n1.549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A feature known as high-voltage gain conversion is necessary for a number of applications, including photovoltaic (PV) connected systems, UPS, SMPS, and some inverter applications, specifically for the power processing of low-voltage renewable sources. This article makes a suggestion for an ultra-gain boost converter based on a switched-inductor switched-capacitor (SISC) network. Ultra-voltage gain (> 15) and lower voltage stresses across the switches are the main benefits of the proposed converter. Additionally, compared with other high-gain topologies, the number of components decreases. This paper presents a systematic analysis of the proposed ultra-gain boost DC–DC converter along with a comparison to other topologies that have been previously published in the literature. The simulation model confirmed that the efficiency of the proposed topology is 95.23%.\",\"PeriodicalId\":505929,\"journal\":{\"name\":\"Transactions on Energy Systems and Engineering Applications\",\"volume\":\"25 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Energy Systems and Engineering Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32397/tesea.vol5.n1.549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Energy Systems and Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32397/tesea.vol5.n1.549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A switched-inductor switched-capacitor based ultra-gain boost converter: analysis and design
A feature known as high-voltage gain conversion is necessary for a number of applications, including photovoltaic (PV) connected systems, UPS, SMPS, and some inverter applications, specifically for the power processing of low-voltage renewable sources. This article makes a suggestion for an ultra-gain boost converter based on a switched-inductor switched-capacitor (SISC) network. Ultra-voltage gain (> 15) and lower voltage stresses across the switches are the main benefits of the proposed converter. Additionally, compared with other high-gain topologies, the number of components decreases. This paper presents a systematic analysis of the proposed ultra-gain boost DC–DC converter along with a comparison to other topologies that have been previously published in the literature. The simulation model confirmed that the efficiency of the proposed topology is 95.23%.