Jaqueline Oliveira Dos Reis, Carine Baggio Cavalcante, Nathaly Barros Nunes, Adelino Cunha Neto, Maxsueli Aparecida Moura Machado, Y. Porto, Vinicius Silva Castro, E. E. Figueiredo
{"title":"来自本地鱼类的有机物质对次氯酸钠(NaClO)减少沙门氏菌数量的抗菌效果的影响","authors":"Jaqueline Oliveira Dos Reis, Carine Baggio Cavalcante, Nathaly Barros Nunes, Adelino Cunha Neto, Maxsueli Aparecida Moura Machado, Y. Porto, Vinicius Silva Castro, E. E. Figueiredo","doi":"10.3390/microbiolres15010023","DOIUrl":null,"url":null,"abstract":"Salmonella spp. is not part of the fish microbiota, being introduced through contaminated water or improper handling. In slaughterhouses, five parts per million (ppm) of free chlorine is recommended in the washing step to eliminate this pathogen. However, Salmonella spp. is still detected in fish processing plants due to persistent contamination as a result of chlorine–organic matter interactions that reduce chlorine effectiveness. Therefore, this study aimed to test whether organic matter contained in culture media and fish washes interferes with the efficacy of chlorine at 2 and 5 ppm, and what is the time of action required to inactivate ATCC and wild strains of S. typhimurium. For this, the elimination or survival of these strains was investigated when exposed to chlorinated solution for different durations (0, 5, 30, 60, 90 and 120 min) in culture medium, 0.85% saline solution and fish wash (in natura and sterilized). The results showed that the use of 5 ppm of free chlorine is efficient, even when the chlorine remains in contact with the organic matter (washed from the fish), as it reduced the bacterial population by ~5 log log10 CFU/mL of Salmonella spp., showing that this reduction was due to interactions, as long as the chlorine action time was 30 min.","PeriodicalId":506564,"journal":{"name":"Microbiology Research","volume":"71 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Organic Matter from Native Fish on the Antimicrobial Efficacy of Sodium Hypochlorite (NaClO) in Reducing Salmonella spp. Population\",\"authors\":\"Jaqueline Oliveira Dos Reis, Carine Baggio Cavalcante, Nathaly Barros Nunes, Adelino Cunha Neto, Maxsueli Aparecida Moura Machado, Y. Porto, Vinicius Silva Castro, E. E. Figueiredo\",\"doi\":\"10.3390/microbiolres15010023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salmonella spp. is not part of the fish microbiota, being introduced through contaminated water or improper handling. In slaughterhouses, five parts per million (ppm) of free chlorine is recommended in the washing step to eliminate this pathogen. However, Salmonella spp. is still detected in fish processing plants due to persistent contamination as a result of chlorine–organic matter interactions that reduce chlorine effectiveness. Therefore, this study aimed to test whether organic matter contained in culture media and fish washes interferes with the efficacy of chlorine at 2 and 5 ppm, and what is the time of action required to inactivate ATCC and wild strains of S. typhimurium. For this, the elimination or survival of these strains was investigated when exposed to chlorinated solution for different durations (0, 5, 30, 60, 90 and 120 min) in culture medium, 0.85% saline solution and fish wash (in natura and sterilized). The results showed that the use of 5 ppm of free chlorine is efficient, even when the chlorine remains in contact with the organic matter (washed from the fish), as it reduced the bacterial population by ~5 log log10 CFU/mL of Salmonella spp., showing that this reduction was due to interactions, as long as the chlorine action time was 30 min.\",\"PeriodicalId\":506564,\"journal\":{\"name\":\"Microbiology Research\",\"volume\":\"71 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/microbiolres15010023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres15010023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Organic Matter from Native Fish on the Antimicrobial Efficacy of Sodium Hypochlorite (NaClO) in Reducing Salmonella spp. Population
Salmonella spp. is not part of the fish microbiota, being introduced through contaminated water or improper handling. In slaughterhouses, five parts per million (ppm) of free chlorine is recommended in the washing step to eliminate this pathogen. However, Salmonella spp. is still detected in fish processing plants due to persistent contamination as a result of chlorine–organic matter interactions that reduce chlorine effectiveness. Therefore, this study aimed to test whether organic matter contained in culture media and fish washes interferes with the efficacy of chlorine at 2 and 5 ppm, and what is the time of action required to inactivate ATCC and wild strains of S. typhimurium. For this, the elimination or survival of these strains was investigated when exposed to chlorinated solution for different durations (0, 5, 30, 60, 90 and 120 min) in culture medium, 0.85% saline solution and fish wash (in natura and sterilized). The results showed that the use of 5 ppm of free chlorine is efficient, even when the chlorine remains in contact with the organic matter (washed from the fish), as it reduced the bacterial population by ~5 log log10 CFU/mL of Salmonella spp., showing that this reduction was due to interactions, as long as the chlorine action time was 30 min.