为医学图像平整因子化卷积的奇异值

Zexin Feng, Na Zeng, Jiansheng Fang, Xingyue Wang, Xiaoxi Lu, Heng Meng, Jiang Liu
{"title":"为医学图像平整因子化卷积的奇异值","authors":"Zexin Feng, Na Zeng, Jiansheng Fang, Xingyue Wang, Xiaoxi Lu, Heng Meng, Jiang Liu","doi":"10.1109/icassp48485.2024.10446894","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have long been the paradigm of choice for robust medical image processing (MIP). Therefore, it is crucial to effectively and efficiently deploy CNNs on devices with different computing capabilities to support computer-aided diagnosis. Many methods employ factorized convolutional layers to alleviate the burden of limited computational resources at the expense of expressiveness. To this end, given weak medical image-driven CNN model optimization, a Singular value equalization generalizer-induced Factorized Convolution (SFConv) is proposed to improve the expressive power of factorized convolutions in MIP models. We first decompose the weight matrix of convolutional filters into two low-rank matrices to achieve model reduction. Then minimize the KL divergence between the two low-rank weight matrices and the uniform distribution, thereby reducing the number of singular value directions with significant variance. Extensive experiments on fundus and OCTA datasets demonstrate that our SFConv yields competitive expressiveness over vanilla convolutions while reducing complexity.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"61 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flattening Singular Values of Factorized Convolution for Medical Images\",\"authors\":\"Zexin Feng, Na Zeng, Jiansheng Fang, Xingyue Wang, Xiaoxi Lu, Heng Meng, Jiang Liu\",\"doi\":\"10.1109/icassp48485.2024.10446894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) have long been the paradigm of choice for robust medical image processing (MIP). Therefore, it is crucial to effectively and efficiently deploy CNNs on devices with different computing capabilities to support computer-aided diagnosis. Many methods employ factorized convolutional layers to alleviate the burden of limited computational resources at the expense of expressiveness. To this end, given weak medical image-driven CNN model optimization, a Singular value equalization generalizer-induced Factorized Convolution (SFConv) is proposed to improve the expressive power of factorized convolutions in MIP models. We first decompose the weight matrix of convolutional filters into two low-rank matrices to achieve model reduction. Then minimize the KL divergence between the two low-rank weight matrices and the uniform distribution, thereby reducing the number of singular value directions with significant variance. Extensive experiments on fundus and OCTA datasets demonstrate that our SFConv yields competitive expressiveness over vanilla convolutions while reducing complexity.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"61 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp48485.2024.10446894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp48485.2024.10446894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,卷积神经网络(CNN)一直是稳健医学图像处理(MIP)的首选模式。因此,在具有不同计算能力的设备上有效、高效地部署卷积神经网络以支持计算机辅助诊断至关重要。许多方法采用因子化卷积层来减轻有限计算资源的负担,但却牺牲了表现力。为此,鉴于弱医疗图像驱动的 CNN 模型优化,我们提出了奇异值均衡泛化诱导因式卷积(SFConv),以提高因式卷积在 MIP 模型中的表现力。我们首先将卷积滤波器的权重矩阵分解为两个低秩矩阵,以实现模型还原。然后最小化两个低阶权重矩阵与均匀分布之间的 KL 发散,从而减少具有显著方差的奇异值方向的数量。在眼底和 OCTA 数据集上进行的大量实验证明,我们的 SFConv 在降低复杂度的同时,比 vanilla 卷积滤波器具有更强的表现力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flattening Singular Values of Factorized Convolution for Medical Images
Convolutional neural networks (CNNs) have long been the paradigm of choice for robust medical image processing (MIP). Therefore, it is crucial to effectively and efficiently deploy CNNs on devices with different computing capabilities to support computer-aided diagnosis. Many methods employ factorized convolutional layers to alleviate the burden of limited computational resources at the expense of expressiveness. To this end, given weak medical image-driven CNN model optimization, a Singular value equalization generalizer-induced Factorized Convolution (SFConv) is proposed to improve the expressive power of factorized convolutions in MIP models. We first decompose the weight matrix of convolutional filters into two low-rank matrices to achieve model reduction. Then minimize the KL divergence between the two low-rank weight matrices and the uniform distribution, thereby reducing the number of singular value directions with significant variance. Extensive experiments on fundus and OCTA datasets demonstrate that our SFConv yields competitive expressiveness over vanilla convolutions while reducing complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信