利用造血祖细胞和诱导多能干细胞生成中性粒细胞:潜在应用

IF 3.7 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"利用造血祖细胞和诱导多能干细胞生成中性粒细胞:潜在应用","authors":"","doi":"10.1016/j.jcyt.2024.03.483","DOIUrl":null,"url":null,"abstract":"<div><p>Neutrophils are the most frequent immune cell type in peripheral blood, performing an essential role against pathogens. People with neutrophil deficiencies are susceptible to deadly infections, highlighting the importance of generating these cells in host immunity. Neutrophils can be generated from hematopoietic progenitor cells (HPCs) and embryonic stem cells (ESCs) using a cocktail of cytokines. In addition, induced pluripotent stem cells (iPSCs) can be differentiated into various functional cell types, including neutrophils. iPSCs can be derived from differentiated cells, such as skin and blood cells, by reprogramming them to a pluripotent state. Neutrophil generation from iPSCs involves a multistep process that can be performed through feeder cell-dependent and feeder cell-independent manners. Various cytokines and growth factors, in particular, stem cell facto, IL-3, thrombopoietin and granulocyte colony-stimulating factor (G-CSF), are used in both methods, especially, G-CSF which induces the final differentiation of neutrophils in the granulocyte lineage. iPSC-derived neutrophils have been used as a valuable tool for studying rare genetic disorders affecting neutrophils. The iPSC-derived neutrophils can also be used for disease modeling, infection research and drug discovery. However, several challenges must be overcome before iPSC-derived neutrophils can be used therapeutically in transplantation medicine. This review provides an overview of the commonly employed protocols for generating neutrophils from HPCs, ESCs and iPSCs and discusses the potential applications of the generated cells in research and medicine.</p></div>","PeriodicalId":50597,"journal":{"name":"Cytotherapy","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrophil generation from hematopoietic progenitor cells and induced pluripotent stem cells (iPSCs): potential applications\",\"authors\":\"\",\"doi\":\"10.1016/j.jcyt.2024.03.483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neutrophils are the most frequent immune cell type in peripheral blood, performing an essential role against pathogens. People with neutrophil deficiencies are susceptible to deadly infections, highlighting the importance of generating these cells in host immunity. Neutrophils can be generated from hematopoietic progenitor cells (HPCs) and embryonic stem cells (ESCs) using a cocktail of cytokines. In addition, induced pluripotent stem cells (iPSCs) can be differentiated into various functional cell types, including neutrophils. iPSCs can be derived from differentiated cells, such as skin and blood cells, by reprogramming them to a pluripotent state. Neutrophil generation from iPSCs involves a multistep process that can be performed through feeder cell-dependent and feeder cell-independent manners. Various cytokines and growth factors, in particular, stem cell facto, IL-3, thrombopoietin and granulocyte colony-stimulating factor (G-CSF), are used in both methods, especially, G-CSF which induces the final differentiation of neutrophils in the granulocyte lineage. iPSC-derived neutrophils have been used as a valuable tool for studying rare genetic disorders affecting neutrophils. The iPSC-derived neutrophils can also be used for disease modeling, infection research and drug discovery. However, several challenges must be overcome before iPSC-derived neutrophils can be used therapeutically in transplantation medicine. This review provides an overview of the commonly employed protocols for generating neutrophils from HPCs, ESCs and iPSCs and discusses the potential applications of the generated cells in research and medicine.</p></div>\",\"PeriodicalId\":50597,\"journal\":{\"name\":\"Cytotherapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1465324924005772\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1465324924005772","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中性粒细胞是外周血中最常见的免疫细胞类型,发挥着抵御病原体的重要作用。缺乏中性粒细胞的人容易受到致命感染,这凸显了生成这些细胞在宿主免疫中的重要性。中性粒细胞可通过使用鸡尾酒细胞因子从造血祖细胞(HPC)和胚胎干细胞(ESC)中生成。此外,诱导多能干细胞(iPSCs)可分化成各种功能细胞类型,包括中性粒细胞。iPSCs 可从皮肤和血液细胞等已分化细胞中提取,将其重新编程为多能状态。由 iPSCs 生成中性粒细胞涉及一个多步骤过程,可通过依赖饲养细胞和不依赖饲养细胞的方式进行。这两种方法都使用了各种细胞因子和生长因子,特别是干细胞因子、IL-3、血小板生成素和粒细胞集落刺激因子(G-CSF),尤其是 G-CSF,它能诱导中性粒细胞最终分化为粒细胞系。iPSC 衍生的中性粒细胞还可用于疾病建模、感染研究和药物发现。然而,iPSC 衍生的嗜中性粒细胞在移植医学中用于治疗之前必须克服几个挑战。本综述概述了从 HPC、ESC 和 iPSC 生成中性粒细胞的常用方案,并讨论了所生成细胞在研究和医学中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Neutrophil generation from hematopoietic progenitor cells and induced pluripotent stem cells (iPSCs): potential applications

Neutrophil generation from hematopoietic progenitor cells and induced pluripotent stem cells (iPSCs): potential applications

Neutrophils are the most frequent immune cell type in peripheral blood, performing an essential role against pathogens. People with neutrophil deficiencies are susceptible to deadly infections, highlighting the importance of generating these cells in host immunity. Neutrophils can be generated from hematopoietic progenitor cells (HPCs) and embryonic stem cells (ESCs) using a cocktail of cytokines. In addition, induced pluripotent stem cells (iPSCs) can be differentiated into various functional cell types, including neutrophils. iPSCs can be derived from differentiated cells, such as skin and blood cells, by reprogramming them to a pluripotent state. Neutrophil generation from iPSCs involves a multistep process that can be performed through feeder cell-dependent and feeder cell-independent manners. Various cytokines and growth factors, in particular, stem cell facto, IL-3, thrombopoietin and granulocyte colony-stimulating factor (G-CSF), are used in both methods, especially, G-CSF which induces the final differentiation of neutrophils in the granulocyte lineage. iPSC-derived neutrophils have been used as a valuable tool for studying rare genetic disorders affecting neutrophils. The iPSC-derived neutrophils can also be used for disease modeling, infection research and drug discovery. However, several challenges must be overcome before iPSC-derived neutrophils can be used therapeutically in transplantation medicine. This review provides an overview of the commonly employed protocols for generating neutrophils from HPCs, ESCs and iPSCs and discusses the potential applications of the generated cells in research and medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotherapy
Cytotherapy 医学-生物工程与应用微生物
CiteScore
6.30
自引率
4.40%
发文量
683
审稿时长
49 days
期刊介绍: The journal brings readers the latest developments in the fast moving field of cellular therapy in man. This includes cell therapy for cancer, immune disorders, inherited diseases, tissue repair and regenerative medicine. The journal covers the science, translational development and treatment with variety of cell types including hematopoietic stem cells, immune cells (dendritic cells, NK, cells, T cells, antigen presenting cells) mesenchymal stromal cells, adipose cells, nerve, muscle, vascular and endothelial cells, and induced pluripotential stem cells. We also welcome manuscripts on subcellular derivatives such as exosomes. A specific focus is on translational research that brings cell therapy to the clinic. Cytotherapy publishes original papers, reviews, position papers editorials, commentaries and letters to the editor. We welcome "Protocols in Cytotherapy" bringing standard operating procedure for production specific cell types for clinical use within the reach of the readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信