针对长时间次声微压计数据的精确自动对流涡旋探测方法

Elizabeth M. Berg, Louis Urtecho, S. Krishnamoorthy, Elizabeth Silber, Andrew Sparks, D. C. Bowman
{"title":"针对长时间次声微压计数据的精确自动对流涡旋探测方法","authors":"Elizabeth M. Berg, Louis Urtecho, S. Krishnamoorthy, Elizabeth Silber, Andrew Sparks, D. C. Bowman","doi":"10.1175/jtech-d-23-0037.1","DOIUrl":null,"url":null,"abstract":"\nHeating of the surficial layer of the atmosphere often generates convective vortices, known as “dust devils” when they entrain visible debris. Convective vortices are common on both Earth and Mars, where they affect the climate via dust loading, contribute to wind erosion, impact the efficiency of photovoltaic systems, and potentially result in injury and property damage. However, long-duration terrestrial convective vortex activity records are rare. We have developed a high-precision and high-recall method to extract convective vortex signatures from infrasound microbarometer data streams. The techniques utilizes a wavelet-based detector to capture potential events and then a template matching system to extract the duration of the vortex. Since permanent and temporary infrasound sensors networks are present throughout the globe (many with open data), our method unlocks a vast new convective vortex dataset without requiring the deployment of specialized instrumentation.\n\n\nConvective vortices, or “dust devils,” contribute to regional dust loading in Earth’s atmosphere. However, long-duration convective vortex activity records are rare. We came up with a way to autonomously detect the pressure signatures left by convective vortices striking low-frequency sound, or “infrasound,” sensors. Since permanent infrasound stations have been active for decades, our method has the potential to add orders-of-magnitude more events than previously catalogued.","PeriodicalId":507668,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Accurate and Automated Convective Vortex Detection Method for Long-Duration Infrasound Microbarometer Data\",\"authors\":\"Elizabeth M. Berg, Louis Urtecho, S. Krishnamoorthy, Elizabeth Silber, Andrew Sparks, D. C. Bowman\",\"doi\":\"10.1175/jtech-d-23-0037.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nHeating of the surficial layer of the atmosphere often generates convective vortices, known as “dust devils” when they entrain visible debris. Convective vortices are common on both Earth and Mars, where they affect the climate via dust loading, contribute to wind erosion, impact the efficiency of photovoltaic systems, and potentially result in injury and property damage. However, long-duration terrestrial convective vortex activity records are rare. We have developed a high-precision and high-recall method to extract convective vortex signatures from infrasound microbarometer data streams. The techniques utilizes a wavelet-based detector to capture potential events and then a template matching system to extract the duration of the vortex. Since permanent and temporary infrasound sensors networks are present throughout the globe (many with open data), our method unlocks a vast new convective vortex dataset without requiring the deployment of specialized instrumentation.\\n\\n\\nConvective vortices, or “dust devils,” contribute to regional dust loading in Earth’s atmosphere. However, long-duration convective vortex activity records are rare. We came up with a way to autonomously detect the pressure signatures left by convective vortices striking low-frequency sound, or “infrasound,” sensors. Since permanent infrasound stations have been active for decades, our method has the potential to add orders-of-magnitude more events than previously catalogued.\",\"PeriodicalId\":507668,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-23-0037.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jtech-d-23-0037.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大气表层受热往往会产生对流漩涡,当漩涡夹带可见碎片时,就被称为 "尘魔"。对流漩涡在地球和火星上都很常见,它们通过尘埃负荷影响气候,造成风蚀,影响光伏系统的效率,并可能导致人员伤亡和财产损失。然而,长时间的陆地对流涡旋活动记录非常罕见。我们开发了一种高精度、高回放的方法,从次声微压计数据流中提取对流涡旋特征。该技术利用基于小波的探测器捕捉潜在事件,然后利用模板匹配系统提取对流涡旋的持续时间。由于永久性和临时性次声传感器网络遍布全球各地(其中许多数据是开放的),我们的方法无需部署专门仪器即可获取大量新的对流涡旋数据集。然而,长时间的对流涡旋活动记录非常罕见。我们想出了一种方法,利用低频声或 "次声 "传感器自主探测对流涡旋留下的压力信号。由于永久性次声站已经运行了几十年,我们的方法有可能增加比以前编目数量级更多的事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Accurate and Automated Convective Vortex Detection Method for Long-Duration Infrasound Microbarometer Data
Heating of the surficial layer of the atmosphere often generates convective vortices, known as “dust devils” when they entrain visible debris. Convective vortices are common on both Earth and Mars, where they affect the climate via dust loading, contribute to wind erosion, impact the efficiency of photovoltaic systems, and potentially result in injury and property damage. However, long-duration terrestrial convective vortex activity records are rare. We have developed a high-precision and high-recall method to extract convective vortex signatures from infrasound microbarometer data streams. The techniques utilizes a wavelet-based detector to capture potential events and then a template matching system to extract the duration of the vortex. Since permanent and temporary infrasound sensors networks are present throughout the globe (many with open data), our method unlocks a vast new convective vortex dataset without requiring the deployment of specialized instrumentation. Convective vortices, or “dust devils,” contribute to regional dust loading in Earth’s atmosphere. However, long-duration convective vortex activity records are rare. We came up with a way to autonomously detect the pressure signatures left by convective vortices striking low-frequency sound, or “infrasound,” sensors. Since permanent infrasound stations have been active for decades, our method has the potential to add orders-of-magnitude more events than previously catalogued.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信