{"title":"CHARMM-GUI PDB 阅读器和操纵器:共价配体建模与仿真","authors":"","doi":"10.1016/j.jmb.2024.168554","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular modeling and simulation serve an important role in exploring biological functions of proteins at the molecular level, which is complementary to experiments. CHARMM-GUI (<span><span>https://www.charmm-gui.org</span><svg><path></path></svg></span>) is a web-based graphical user interface that generates complex molecular simulation systems and input files, and we have been continuously developing and expanding its functionalities to facilitate various complex molecular modeling and make molecular dynamics simulations more accessible to the scientific community. Currently, covalent drug discovery emerges as a popular and important field. Covalent drug forms a chemical bond with specific residues on the target protein, and it has advantages in potency for its prolonged inhibition effects. Even though there are higher demands in modeling PDB protein structures with various covalent ligand types, proper modeling of covalent ligands remains challenging. This work presents a new functionality in CHARMM-GUI <em>PDB Reader & Manipulator</em> that can handle a diversity of ligand-amino acid linkage types, which is validated by a careful benchmark study using over 1,000 covalent ligand structures in RCSB PDB. We hope that this new functionality can boost the modeling and simulation study of covalent ligands.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001499/pdfft?md5=c22bc6a24892229f4d80acb3c293965e&pid=1-s2.0-S0022283624001499-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CHARMM-GUI PDB Reader and Manipulator: Covalent Ligand Modeling and Simulation\",\"authors\":\"\",\"doi\":\"10.1016/j.jmb.2024.168554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molecular modeling and simulation serve an important role in exploring biological functions of proteins at the molecular level, which is complementary to experiments. CHARMM-GUI (<span><span>https://www.charmm-gui.org</span><svg><path></path></svg></span>) is a web-based graphical user interface that generates complex molecular simulation systems and input files, and we have been continuously developing and expanding its functionalities to facilitate various complex molecular modeling and make molecular dynamics simulations more accessible to the scientific community. Currently, covalent drug discovery emerges as a popular and important field. Covalent drug forms a chemical bond with specific residues on the target protein, and it has advantages in potency for its prolonged inhibition effects. Even though there are higher demands in modeling PDB protein structures with various covalent ligand types, proper modeling of covalent ligands remains challenging. This work presents a new functionality in CHARMM-GUI <em>PDB Reader & Manipulator</em> that can handle a diversity of ligand-amino acid linkage types, which is validated by a careful benchmark study using over 1,000 covalent ligand structures in RCSB PDB. We hope that this new functionality can boost the modeling and simulation study of covalent ligands.</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022283624001499/pdfft?md5=c22bc6a24892229f4d80acb3c293965e&pid=1-s2.0-S0022283624001499-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624001499\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624001499","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CHARMM-GUI PDB Reader and Manipulator: Covalent Ligand Modeling and Simulation
Molecular modeling and simulation serve an important role in exploring biological functions of proteins at the molecular level, which is complementary to experiments. CHARMM-GUI (https://www.charmm-gui.org) is a web-based graphical user interface that generates complex molecular simulation systems and input files, and we have been continuously developing and expanding its functionalities to facilitate various complex molecular modeling and make molecular dynamics simulations more accessible to the scientific community. Currently, covalent drug discovery emerges as a popular and important field. Covalent drug forms a chemical bond with specific residues on the target protein, and it has advantages in potency for its prolonged inhibition effects. Even though there are higher demands in modeling PDB protein structures with various covalent ligand types, proper modeling of covalent ligands remains challenging. This work presents a new functionality in CHARMM-GUI PDB Reader & Manipulator that can handle a diversity of ligand-amino acid linkage types, which is validated by a careful benchmark study using over 1,000 covalent ligand structures in RCSB PDB. We hope that this new functionality can boost the modeling and simulation study of covalent ligands.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.