毒理学中单细胞转录组分析的独特挑战和最佳实践

IF 4.6
David Filipovic , Omar Kana , Daniel Marri , Sudin Bhattacharya
{"title":"毒理学中单细胞转录组分析的独特挑战和最佳实践","authors":"David Filipovic ,&nbsp;Omar Kana ,&nbsp;Daniel Marri ,&nbsp;Sudin Bhattacharya","doi":"10.1016/j.cotox.2024.100475","DOIUrl":null,"url":null,"abstract":"<div><p>The application and analysis of single-cell transcriptomics in toxicology presents unique challenges. These include identifying cell sub-populations sensitive to perturbation; interpreting dynamic shifts in cell type proportions in response to chemical exposures; and performing differential expression analysis in dose–response studies spanning multiple treatment conditions. This review examines these challenges while presenting best practices for critical single cell analysis tasks. This covers areas such as cell type identification; analysis of differential cell type abundance; differential gene expression; and cellular trajectories. Towards enhancing the use of single-cell transcriptomics in toxicology, this review aims to address key challenges in this field and offer practical analytical solutions. Overall, applying appropriate bioinformatic techniques to single-cell transcriptomic data can yield valuable insights into cellular responses to toxic exposures.</p></div>","PeriodicalId":93968,"journal":{"name":"Current opinion in toxicology","volume":"38 ","pages":"Article 100475"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique challenges and best practices for single cell transcriptomic analysis in toxicology\",\"authors\":\"David Filipovic ,&nbsp;Omar Kana ,&nbsp;Daniel Marri ,&nbsp;Sudin Bhattacharya\",\"doi\":\"10.1016/j.cotox.2024.100475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application and analysis of single-cell transcriptomics in toxicology presents unique challenges. These include identifying cell sub-populations sensitive to perturbation; interpreting dynamic shifts in cell type proportions in response to chemical exposures; and performing differential expression analysis in dose–response studies spanning multiple treatment conditions. This review examines these challenges while presenting best practices for critical single cell analysis tasks. This covers areas such as cell type identification; analysis of differential cell type abundance; differential gene expression; and cellular trajectories. Towards enhancing the use of single-cell transcriptomics in toxicology, this review aims to address key challenges in this field and offer practical analytical solutions. Overall, applying appropriate bioinformatic techniques to single-cell transcriptomic data can yield valuable insights into cellular responses to toxic exposures.</p></div>\",\"PeriodicalId\":93968,\"journal\":{\"name\":\"Current opinion in toxicology\",\"volume\":\"38 \",\"pages\":\"Article 100475\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468202024000172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468202024000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞转录组学在毒理学中的应用和分析面临着独特的挑战。这些挑战包括识别对扰动敏感的细胞亚群;解释细胞类型比例对化学暴露反应的动态变化;以及在跨越多种处理条件的剂量反应研究中进行差异表达分析。本综述探讨了这些挑战,同时介绍了关键单细胞分析任务的最佳实践。其中包括细胞类型鉴定、细胞类型丰度差异分析、差异基因表达和细胞轨迹等领域。为了加强单细胞转录组学在毒理学中的应用,本综述旨在解决该领域的关键挑战,并提供实用的分析解决方案。总之,将适当的生物信息学技术应用于单细胞转录组数据,可以获得细胞对毒性暴露反应的宝贵见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unique challenges and best practices for single cell transcriptomic analysis in toxicology

The application and analysis of single-cell transcriptomics in toxicology presents unique challenges. These include identifying cell sub-populations sensitive to perturbation; interpreting dynamic shifts in cell type proportions in response to chemical exposures; and performing differential expression analysis in dose–response studies spanning multiple treatment conditions. This review examines these challenges while presenting best practices for critical single cell analysis tasks. This covers areas such as cell type identification; analysis of differential cell type abundance; differential gene expression; and cellular trajectories. Towards enhancing the use of single-cell transcriptomics in toxicology, this review aims to address key challenges in this field and offer practical analytical solutions. Overall, applying appropriate bioinformatic techniques to single-cell transcriptomic data can yield valuable insights into cellular responses to toxic exposures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in toxicology
Current opinion in toxicology Toxicology, Biochemistry
CiteScore
8.50
自引率
0.00%
发文量
0
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信