PAN/HPMC/Gr 纳米复合材料的水处理性能

Masar A. Akaood, Iftikhar M. Ali, Basma I. Waisi
{"title":"PAN/HPMC/Gr 纳米复合材料的水处理性能","authors":"Masar A. Akaood, Iftikhar M. Ali, Basma I. Waisi","doi":"10.30723/ijp.v22i1.1175","DOIUrl":null,"url":null,"abstract":"This study investigates polyacrylonitrile:hydroxypropyl methylcellulose )PAN:HPMC( and PAN:HPMC: graphene (Gr) composite nanofibers prepared using the electrospinning technique. Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Membrane technology is vital in removing contaminants due to its easy handling and high efficiency. The results demonstrated that the Gr was successfully incorporated into the PAN:HPMC nanofiber membranes, as confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) measurements. The Gr content has a significant impact on the diameter, porosity, and pore size. The PAN:HPMC:0.02Gr electrospun nanofiber membranes achieved excellent oil rejection (72.47%) and good permeability flux (750 LMH); this might be a result of how well the functional groups of the equally distributed Gr within the PAN:HPMC nanofibers interacted with oil. It was noticed that oil rejection dropped a lot as the Gr content went up. This is likely because the pores got wider and some of the Gr stacked or agglomerated across the nanofibers.  ","PeriodicalId":517619,"journal":{"name":"Iraqi Journal of Physics","volume":"43 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water Treatment Performance of PAN/HPMC/Gr Nano Composites\",\"authors\":\"Masar A. Akaood, Iftikhar M. Ali, Basma I. Waisi\",\"doi\":\"10.30723/ijp.v22i1.1175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates polyacrylonitrile:hydroxypropyl methylcellulose )PAN:HPMC( and PAN:HPMC: graphene (Gr) composite nanofibers prepared using the electrospinning technique. Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Membrane technology is vital in removing contaminants due to its easy handling and high efficiency. The results demonstrated that the Gr was successfully incorporated into the PAN:HPMC nanofiber membranes, as confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) measurements. The Gr content has a significant impact on the diameter, porosity, and pore size. The PAN:HPMC:0.02Gr electrospun nanofiber membranes achieved excellent oil rejection (72.47%) and good permeability flux (750 LMH); this might be a result of how well the functional groups of the equally distributed Gr within the PAN:HPMC nanofibers interacted with oil. It was noticed that oil rejection dropped a lot as the Gr content went up. This is likely because the pores got wider and some of the Gr stacked or agglomerated across the nanofibers.  \",\"PeriodicalId\":517619,\"journal\":{\"name\":\"Iraqi Journal of Physics\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30723/ijp.v22i1.1175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30723/ijp.v22i1.1175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了利用电纺丝技术制备的聚丙烯腈:羟丙基甲基纤维素(PAN:HPMC)和聚丙烯腈:羟丙基甲基纤维素:石墨烯(Gr)复合纳米纤维。电纺丝是一种简单而多用途的技术,它依靠表面电荷之间的静电斥力从粘弹性流体中不断牵引纳米纤维。膜技术因其操作简便、效率高而在清除污染物方面发挥着重要作用。扫描电子显微镜、傅立叶变换红外光谱(FTIR)和 X 射线衍射(XRD)测量结果表明,PAN:HPMC 纳米纤维膜中成功加入了 Gr。Gr 含量对直径、孔隙率和孔径有显著影响。PAN:HPMC:0.02Gr 电纺纳米纤维膜实现了出色的油排斥(72.47%)和良好的渗透通量(750 LMH);这可能是 PAN:HPMC 纳米纤维中平均分布的 Gr 的官能团与油相互作用的结果。我们注意到,随着 Gr 含量的增加,排油量也大幅下降。这可能是因为孔隙变宽,一些锗在纳米纤维上堆积或聚集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water Treatment Performance of PAN/HPMC/Gr Nano Composites
This study investigates polyacrylonitrile:hydroxypropyl methylcellulose )PAN:HPMC( and PAN:HPMC: graphene (Gr) composite nanofibers prepared using the electrospinning technique. Electrospinning is a simple and versatile technique that relies on the electrostatic repulsion between surface charges to continuously draw nanofibers from a viscoelastic fluid. Membrane technology is vital in removing contaminants due to its easy handling and high efficiency. The results demonstrated that the Gr was successfully incorporated into the PAN:HPMC nanofiber membranes, as confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) measurements. The Gr content has a significant impact on the diameter, porosity, and pore size. The PAN:HPMC:0.02Gr electrospun nanofiber membranes achieved excellent oil rejection (72.47%) and good permeability flux (750 LMH); this might be a result of how well the functional groups of the equally distributed Gr within the PAN:HPMC nanofibers interacted with oil. It was noticed that oil rejection dropped a lot as the Gr content went up. This is likely because the pores got wider and some of the Gr stacked or agglomerated across the nanofibers.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信