{"title":"背部支撑外骨骼 3D 打印摆线致动器的动态特性分析与控制","authors":"","doi":"10.1016/j.cirp.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>The safety, health, and well-being of human workers are crucial for socially sustainable production systems, especially in Industry 5.0. Occupational exoskeletons, particularly back-support devices, are increasingly being adopted to reduce musculoskeletal disorders and human fatigue. To reduce costs and weight, optimized exoskeleton design is being explored. A 3D-printed cycloidal reduction stage for the actuation unit is proposed, focusing on an interaction torque observer and an impedance-based controller for human-robot interaction. The device's dynamic characterization and control are analyzed to evaluate its applicability to a sensorless back-support occupational exoskeleton.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 29-32"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000027/pdfft?md5=e3bee4097d87252e6d76e946ac83d3e8&pid=1-s2.0-S0007850624000027-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dynamic characterization and control of a back-support exoskeleton 3D-printed cycloidal actuator\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The safety, health, and well-being of human workers are crucial for socially sustainable production systems, especially in Industry 5.0. Occupational exoskeletons, particularly back-support devices, are increasingly being adopted to reduce musculoskeletal disorders and human fatigue. To reduce costs and weight, optimized exoskeleton design is being explored. A 3D-printed cycloidal reduction stage for the actuation unit is proposed, focusing on an interaction torque observer and an impedance-based controller for human-robot interaction. The device's dynamic characterization and control are analyzed to evaluate its applicability to a sensorless back-support occupational exoskeleton.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 29-32\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000027/pdfft?md5=e3bee4097d87252e6d76e946ac83d3e8&pid=1-s2.0-S0007850624000027-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000027\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Dynamic characterization and control of a back-support exoskeleton 3D-printed cycloidal actuator
The safety, health, and well-being of human workers are crucial for socially sustainable production systems, especially in Industry 5.0. Occupational exoskeletons, particularly back-support devices, are increasingly being adopted to reduce musculoskeletal disorders and human fatigue. To reduce costs and weight, optimized exoskeleton design is being explored. A 3D-printed cycloidal reduction stage for the actuation unit is proposed, focusing on an interaction torque observer and an impedance-based controller for human-robot interaction. The device's dynamic characterization and control are analyzed to evaluate its applicability to a sensorless back-support occupational exoskeleton.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.