N. Yoshikawa, Mei Kubokawa, Tetsuya Matsukawa, Hiroaki Kajiyama
{"title":"304 将平均血小板体积作为卵巢透明细胞癌生存指标的探索:回顾性分析和随机森林模型评估","authors":"N. Yoshikawa, Mei Kubokawa, Tetsuya Matsukawa, Hiroaki Kajiyama","doi":"10.1136/ijgc-2024-esgo.614","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":517833,"journal":{"name":"Poster and E-Posters","volume":"291 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"304 Exploring mean platelet volume as a survival indicator in ovarian clear cell carcinoma: a retrospective analysis and random forest model assessment\",\"authors\":\"N. Yoshikawa, Mei Kubokawa, Tetsuya Matsukawa, Hiroaki Kajiyama\",\"doi\":\"10.1136/ijgc-2024-esgo.614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":517833,\"journal\":{\"name\":\"Poster and E-Posters\",\"volume\":\"291 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poster and E-Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/ijgc-2024-esgo.614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poster and E-Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/ijgc-2024-esgo.614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
304 Exploring mean platelet volume as a survival indicator in ovarian clear cell carcinoma: a retrospective analysis and random forest model assessment