用于稀疏微分的张量代数编译器

Amir Shaikhha, Mathieu Huot, Shideh Hashemian
{"title":"用于稀疏微分的张量代数编译器","authors":"Amir Shaikhha, Mathieu Huot, Shideh Hashemian","doi":"10.1109/CGO57630.2024.10444787","DOIUrl":null,"url":null,"abstract":"Sparse tensors are prevalent in many data-intensive applications. However, existing automatic differentiation (AD) frameworks are tailored towards dense tensors, which makes it a challenge to efficiently compute gradients through sparse tensor operations. This is due to irregular sparsity patterns that can result in substantial memory and computational overheads. We propose a novel framework that enables the efficient AD of sparse tensors. The key aspects of our work include a compilation pipeline leveraging two intermediate DSLs with AD-agnostic domain-specific optimizations followed by efficient C++ code generation. We showcase the effectiveness of our framework in terms of performance and scalability through extensive experimentation, outperforming state-of-the-art alternatives across a variety of synthetic and real-world datasets.","PeriodicalId":517814,"journal":{"name":"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","volume":"59 5","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tensor Algebra Compiler for Sparse Differentiation\",\"authors\":\"Amir Shaikhha, Mathieu Huot, Shideh Hashemian\",\"doi\":\"10.1109/CGO57630.2024.10444787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse tensors are prevalent in many data-intensive applications. However, existing automatic differentiation (AD) frameworks are tailored towards dense tensors, which makes it a challenge to efficiently compute gradients through sparse tensor operations. This is due to irregular sparsity patterns that can result in substantial memory and computational overheads. We propose a novel framework that enables the efficient AD of sparse tensors. The key aspects of our work include a compilation pipeline leveraging two intermediate DSLs with AD-agnostic domain-specific optimizations followed by efficient C++ code generation. We showcase the effectiveness of our framework in terms of performance and scalability through extensive experimentation, outperforming state-of-the-art alternatives across a variety of synthetic and real-world datasets.\",\"PeriodicalId\":517814,\"journal\":{\"name\":\"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)\",\"volume\":\"59 5\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGO57630.2024.10444787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO57630.2024.10444787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

稀疏张量在许多数据密集型应用中非常普遍。然而,现有的自动微分(AD)框架都是针对稠密张量量身定制的,这使得通过稀疏张量操作有效计算梯度成为一项挑战。这是由于不规则的稀疏模式会导致大量内存和计算开销。我们提出了一种新颖的框架,可以实现稀疏张量的高效 AD。我们工作的主要方面包括利用两个中间 DSL 的编译流水线和 AD 无关的特定领域优化,以及高效的 C++ 代码生成。通过广泛的实验,我们展示了我们的框架在性能和可扩展性方面的有效性,在各种合成和真实世界数据集上都优于最先进的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Tensor Algebra Compiler for Sparse Differentiation
Sparse tensors are prevalent in many data-intensive applications. However, existing automatic differentiation (AD) frameworks are tailored towards dense tensors, which makes it a challenge to efficiently compute gradients through sparse tensor operations. This is due to irregular sparsity patterns that can result in substantial memory and computational overheads. We propose a novel framework that enables the efficient AD of sparse tensors. The key aspects of our work include a compilation pipeline leveraging two intermediate DSLs with AD-agnostic domain-specific optimizations followed by efficient C++ code generation. We showcase the effectiveness of our framework in terms of performance and scalability through extensive experimentation, outperforming state-of-the-art alternatives across a variety of synthetic and real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信