通过流量敏感性优化提升多解器 IFDS 算法的性能

Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Lian Li, Lin Gao
{"title":"通过流量敏感性优化提升多解器 IFDS 算法的性能","authors":"Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Lian Li, Lin Gao","doi":"10.1109/CGO57630.2024.10444884","DOIUrl":null,"url":null,"abstract":"The IFDS (Inter-procedural, Finite, Distributive, Subset) algorithms are popularly used to solve a wide range of analysis problems. In particular, many interesting problems are formulated as multi-solver IFDS problems which expect multiple interleaved IFDS solvers to work together. For instance, taint analysis requires two IFDS solvers, one forward solver to propagate tainted data-flow facts, and one backward solver to solve alias relations at the same time. For such problems, large amount of additional data-flow facts need to be introduced for flow-sensitivity. This often leads to poor performance and scalability, as evident in our experiments and previous work. In this paper, we propose a novel approach to reduce the number of introduced additional data-flow facts while preserving flow-sensitivity and soundness. We have developed a new taint analysis tool, SADROID, and evaluated it on 1,228 open-source Android APPs. Evaluation results show that SADROID significantly outperforms FLowDROID (the state-of-the-art multi-solver IFDS taint analysis tool) without affecting precision and soundness: the run time performance is sped up by up to 17.89X and memory usage is optimized by up to 9X.","PeriodicalId":517814,"journal":{"name":"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","volume":"62 3","pages":"296-307"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting the Performance of Multi-Solver IFDS Algorithms with Flow-Sensitivity Optimizations\",\"authors\":\"Haofeng Li, Jie Lu, Haining Meng, Liqing Cao, Lian Li, Lin Gao\",\"doi\":\"10.1109/CGO57630.2024.10444884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The IFDS (Inter-procedural, Finite, Distributive, Subset) algorithms are popularly used to solve a wide range of analysis problems. In particular, many interesting problems are formulated as multi-solver IFDS problems which expect multiple interleaved IFDS solvers to work together. For instance, taint analysis requires two IFDS solvers, one forward solver to propagate tainted data-flow facts, and one backward solver to solve alias relations at the same time. For such problems, large amount of additional data-flow facts need to be introduced for flow-sensitivity. This often leads to poor performance and scalability, as evident in our experiments and previous work. In this paper, we propose a novel approach to reduce the number of introduced additional data-flow facts while preserving flow-sensitivity and soundness. We have developed a new taint analysis tool, SADROID, and evaluated it on 1,228 open-source Android APPs. Evaluation results show that SADROID significantly outperforms FLowDROID (the state-of-the-art multi-solver IFDS taint analysis tool) without affecting precision and soundness: the run time performance is sped up by up to 17.89X and memory usage is optimized by up to 9X.\",\"PeriodicalId\":517814,\"journal\":{\"name\":\"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)\",\"volume\":\"62 3\",\"pages\":\"296-307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGO57630.2024.10444884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO57630.2024.10444884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

IFDS(程序间、有限、分配、子集)算法被广泛用于解决各种分析问题。特别是,许多有趣的问题都被表述为多求解器 IFDS 问题,这些问题需要多个交错 IFDS 求解器协同工作。例如,污点分析需要两个 IFDS 求解器,一个前向求解器传播污点数据流事实,另一个后向求解器同时求解别名关系。对于这类问题,需要引入大量额外的数据流事实,以实现对数据流的敏感性。这通常会导致性能和可扩展性较差,这在我们的实验和以前的工作中都很明显。在本文中,我们提出了一种新方法来减少引入额外数据流事实的数量,同时保持流敏感性和健全性。我们开发了一种新的污点分析工具 SADROID,并在 1,228 个开源 Android APP 上对其进行了评估。评估结果表明,SADROID 的性能明显优于 FLowDROID(最先进的多求解器 IFDS 污点分析工具),同时不影响精确性和合理性:运行时间加快了 17.89 倍,内存使用优化了 9 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting the Performance of Multi-Solver IFDS Algorithms with Flow-Sensitivity Optimizations
The IFDS (Inter-procedural, Finite, Distributive, Subset) algorithms are popularly used to solve a wide range of analysis problems. In particular, many interesting problems are formulated as multi-solver IFDS problems which expect multiple interleaved IFDS solvers to work together. For instance, taint analysis requires two IFDS solvers, one forward solver to propagate tainted data-flow facts, and one backward solver to solve alias relations at the same time. For such problems, large amount of additional data-flow facts need to be introduced for flow-sensitivity. This often leads to poor performance and scalability, as evident in our experiments and previous work. In this paper, we propose a novel approach to reduce the number of introduced additional data-flow facts while preserving flow-sensitivity and soundness. We have developed a new taint analysis tool, SADROID, and evaluated it on 1,228 open-source Android APPs. Evaluation results show that SADROID significantly outperforms FLowDROID (the state-of-the-art multi-solver IFDS taint analysis tool) without affecting precision and soundness: the run time performance is sped up by up to 17.89X and memory usage is optimized by up to 9X.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信