利用视觉信息增强音频生成多样性

Zeyu Xie, Baihan Li, Xuenan Xu, Mengyue Wu, Kai Yu
{"title":"利用视觉信息增强音频生成多样性","authors":"Zeyu Xie, Baihan Li, Xuenan Xu, Mengyue Wu, Kai Yu","doi":"10.1109/icassp48485.2024.10447384","DOIUrl":null,"url":null,"abstract":"Audio and sound generation has garnered significant attention in recent years, with a primary focus on improving the quality of generated audios. However, there has been limited research on enhancing the diversity of generated audio, particularly when it comes to audio generation within specific categories. Current models tend to produce homogeneous audio samples within a category. This work aims to address this limitation by improving the diversity of generated audio with visual information. We propose a clustering-based method, leveraging visual information to guide the model in generating distinct audio content within each category. Results on seven categories indicate that extra visual input can largely enhance audio generation diversity. Audio samples are available at https://zeyuxie29.github.io/DiverseAudioGeneration.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"63 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Audio Generation Diversity with Visual Information\",\"authors\":\"Zeyu Xie, Baihan Li, Xuenan Xu, Mengyue Wu, Kai Yu\",\"doi\":\"10.1109/icassp48485.2024.10447384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio and sound generation has garnered significant attention in recent years, with a primary focus on improving the quality of generated audios. However, there has been limited research on enhancing the diversity of generated audio, particularly when it comes to audio generation within specific categories. Current models tend to produce homogeneous audio samples within a category. This work aims to address this limitation by improving the diversity of generated audio with visual information. We propose a clustering-based method, leveraging visual information to guide the model in generating distinct audio content within each category. Results on seven categories indicate that extra visual input can largely enhance audio generation diversity. Audio samples are available at https://zeyuxie29.github.io/DiverseAudioGeneration.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"63 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp48485.2024.10447384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp48485.2024.10447384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,音频和声音生成备受关注,其主要重点是提高生成音频的质量。然而,在提高生成音频的多样性方面,特别是在特定类别音频生成方面,研究还很有限。当前的模型倾向于在一个类别中生成同质的音频样本。这项工作旨在通过视觉信息提高生成音频的多样性,从而解决这一局限性。我们提出了一种基于聚类的方法,利用视觉信息引导模型在每个类别中生成不同的音频内容。对七个类别的研究结果表明,额外的视觉输入可以在很大程度上提高音频生成的多样性。音频样本请访问 https://zeyuxie29.github.io/DiverseAudioGeneration。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Audio Generation Diversity with Visual Information
Audio and sound generation has garnered significant attention in recent years, with a primary focus on improving the quality of generated audios. However, there has been limited research on enhancing the diversity of generated audio, particularly when it comes to audio generation within specific categories. Current models tend to produce homogeneous audio samples within a category. This work aims to address this limitation by improving the diversity of generated audio with visual information. We propose a clustering-based method, leveraging visual information to guide the model in generating distinct audio content within each category. Results on seven categories indicate that extra visual input can largely enhance audio generation diversity. Audio samples are available at https://zeyuxie29.github.io/DiverseAudioGeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信