德国人也会产生幻觉!利用 Absinth 数据集检测新闻摘要中的不一致性

ArXiv Pub Date : 2024-03-06 DOI:10.3929/ethz-b-000661775
Laura Mascarell, Ribin Chalumattu, Annette Rios
{"title":"德国人也会产生幻觉!利用 Absinth 数据集检测新闻摘要中的不一致性","authors":"Laura Mascarell, Ribin Chalumattu, Annette Rios","doi":"10.3929/ethz-b-000661775","DOIUrl":null,"url":null,"abstract":"The advent of Large Language Models (LLMs) has led to remarkable progress on a wide range of natural language processing tasks. Despite the advances, these large-sized models still suffer from hallucinating information in their output, which poses a major issue in automatic text summarization, as we must guarantee that the generated summary is consistent with the content of the source document. Previous research addresses the challenging task of detecting hallucinations in the output (i.e. inconsistency detection) in order to evaluate the faithfulness of the generated summaries. However, these works primarily focus on English and recent multilingual approaches lack German data. This work presents absinth, a manually annotated dataset for hallucination detection in German news summarization and explores the capabilities of novel open-source LLMs on this task in both fine-tuning and in-context learning settings. We open-source and release the absinth dataset to foster further research on hallucination detection in German.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"German also Hallucinates! Inconsistency Detection in News Summaries with the Absinth Dataset\",\"authors\":\"Laura Mascarell, Ribin Chalumattu, Annette Rios\",\"doi\":\"10.3929/ethz-b-000661775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of Large Language Models (LLMs) has led to remarkable progress on a wide range of natural language processing tasks. Despite the advances, these large-sized models still suffer from hallucinating information in their output, which poses a major issue in automatic text summarization, as we must guarantee that the generated summary is consistent with the content of the source document. Previous research addresses the challenging task of detecting hallucinations in the output (i.e. inconsistency detection) in order to evaluate the faithfulness of the generated summaries. However, these works primarily focus on English and recent multilingual approaches lack German data. This work presents absinth, a manually annotated dataset for hallucination detection in German news summarization and explores the capabilities of novel open-source LLMs on this task in both fine-tuning and in-context learning settings. We open-source and release the absinth dataset to foster further research on hallucination detection in German.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3929/ethz-b-000661775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ethz-b-000661775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLMs)的出现,使各种自然语言处理任务取得了显著进展。尽管取得了这些进步,但这些大型模型的输出中仍然会出现幻觉信息,这给自动文本摘要化带来了重大问题,因为我们必须保证生成的摘要与源文件的内容一致。以往的研究解决了检测输出中的幻觉(即不一致性检测)这一具有挑战性的任务,以评估生成摘要的忠实性。不过,这些研究主要集中在英语领域,而最近的多语言方法缺乏德语数据。本作品介绍了用于德语新闻摘要中幻觉检测的人工标注数据集 absinth,并探索了新型开源 LLM 在微调和上下文学习环境下完成该任务的能力。我们开源并发布了苦艾酒数据集,以促进对德语幻觉检测的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
German also Hallucinates! Inconsistency Detection in News Summaries with the Absinth Dataset
The advent of Large Language Models (LLMs) has led to remarkable progress on a wide range of natural language processing tasks. Despite the advances, these large-sized models still suffer from hallucinating information in their output, which poses a major issue in automatic text summarization, as we must guarantee that the generated summary is consistent with the content of the source document. Previous research addresses the challenging task of detecting hallucinations in the output (i.e. inconsistency detection) in order to evaluate the faithfulness of the generated summaries. However, these works primarily focus on English and recent multilingual approaches lack German data. This work presents absinth, a manually annotated dataset for hallucination detection in German news summarization and explores the capabilities of novel open-source LLMs on this task in both fine-tuning and in-context learning settings. We open-source and release the absinth dataset to foster further research on hallucination detection in German.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信