神经头像的视频驱动动画

ArXiv Pub Date : 2024-03-07 DOI:10.2312/vmv.20231237
Wolfgang Paier, Paul Hinzer, A. Hilsmann, P. Eisert
{"title":"神经头像的视频驱动动画","authors":"Wolfgang Paier, Paul Hinzer, A. Hilsmann, P. Eisert","doi":"10.2312/vmv.20231237","DOIUrl":null,"url":null,"abstract":"We present a new approach for video-driven animation of high-quality neural 3D head models, addressing the challenge of person-independent animation from video input. Typically, high-quality generative models are learned for specific individuals from multi-view video footage, resulting in person-specific latent representations that drive the generation process. In order to achieve person-independent animation from video input, we introduce an LSTM-based animation network capable of translating person-independent expression features into personalized animation parameters of person-specific 3D head models. Our approach combines the advantages of personalized head models (high quality and realism) with the convenience of video-driven animation employing multi-person facial performance capture. We demonstrate the effectiveness of our approach on synthesized animations with high quality based on different source videos as well as an ablation study.","PeriodicalId":513202,"journal":{"name":"ArXiv","volume":"21 25‐26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video-Driven Animation of Neural Head Avatars\",\"authors\":\"Wolfgang Paier, Paul Hinzer, A. Hilsmann, P. Eisert\",\"doi\":\"10.2312/vmv.20231237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new approach for video-driven animation of high-quality neural 3D head models, addressing the challenge of person-independent animation from video input. Typically, high-quality generative models are learned for specific individuals from multi-view video footage, resulting in person-specific latent representations that drive the generation process. In order to achieve person-independent animation from video input, we introduce an LSTM-based animation network capable of translating person-independent expression features into personalized animation parameters of person-specific 3D head models. Our approach combines the advantages of personalized head models (high quality and realism) with the convenience of video-driven animation employing multi-person facial performance capture. We demonstrate the effectiveness of our approach on synthesized animations with high quality based on different source videos as well as an ablation study.\",\"PeriodicalId\":513202,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"21 25‐26\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/vmv.20231237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vmv.20231237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种以视频为驱动的高质量神经三维头部模型动画制作新方法,解决了通过视频输入制作与人无关的动画这一难题。通常情况下,高质量生成模型是从多视角视频片段中针对特定个人学习的,从而产生了驱动生成过程的特定个人潜在表征。为了从视频输入中实现与人无关的动画,我们引入了基于 LSTM 的动画网络,该网络能够将与人无关的表情特征转化为特定人三维头部模型的个性化动画参数。我们的方法将个性化头部模型的优势(高质量和逼真度)与视频驱动动画(采用多人面部表情捕捉)的便利性相结合。我们在基于不同源视频的高质量合成动画以及一项消融研究中展示了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video-Driven Animation of Neural Head Avatars
We present a new approach for video-driven animation of high-quality neural 3D head models, addressing the challenge of person-independent animation from video input. Typically, high-quality generative models are learned for specific individuals from multi-view video footage, resulting in person-specific latent representations that drive the generation process. In order to achieve person-independent animation from video input, we introduce an LSTM-based animation network capable of translating person-independent expression features into personalized animation parameters of person-specific 3D head models. Our approach combines the advantages of personalized head models (high quality and realism) with the convenience of video-driven animation employing multi-person facial performance capture. We demonstrate the effectiveness of our approach on synthesized animations with high quality based on different source videos as well as an ablation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信