奇异值不等式在矩阵规范和均值中的应用

IF 0.5 Q3 MATHEMATICS
Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh
{"title":"奇异值不等式在矩阵规范和均值中的应用","authors":"Fuad Kittaneh,&nbsp;Hamid Reza Moradi,&nbsp;Mohammad Sababheh","doi":"10.1007/s44146-024-00113-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we obtain some upper bounds for the singular values of sums of product of matrices. The obtained forms involve direct sums and mean-like matrix quantities. As applications, several bounds will be found in terms of the Aluthge transform, matrix means, matrix monotone functions and accretive-dissipative matrices. For example, we show that if <i>X</i> is an <span>\\(n\\times n\\)</span> accretive-dissipative matrix, then </p><div><div><span>$$\\begin{aligned} {{s}_{j}}\\left( X \\right) \\le \\left( 1+\\frac{\\sqrt{2}}{2} \\right) {{s}_{j}}\\left( \\Re X\\oplus \\Im X \\right) , \\end{aligned}$$</span></div></div><p>for <span>\\(j=1,2,\\ldots n\\)</span>, where <span>\\(s_j(\\cdot ), \\Re (\\cdot )\\)</span> and <span>\\(\\Im (\\cdot )\\)</span> denote the <span>\\(j-\\)</span>th singular value, the real part and the imaginary part, respectively. We also show that if <span>\\(\\sigma _f,\\sigma _g\\)</span> are two matrix means corresponding to the operator monotone functions <i>f</i>, <i>g</i>, then </p><div><div><span>$$\\begin{aligned} {{s}_{j}}\\left( A{{\\sigma }_{f}}B-A{{\\sigma }_{g}}B \\right) \\le \\left\\| A \\right\\| {{s}_{j}}\\left( f\\left( {{A}^{-\\frac{1}{2}}}B{{A}^{-\\frac{1}{2}}} \\right) \\oplus g\\left( {{A}^{-\\frac{1}{2}}}B{{A}^{-\\frac{1}{2}}} \\right) \\right) , \\end{aligned}$$</span></div></div><p>for <span>\\(j =1,2, \\ldots , n\\)</span>, where <i>A</i>, <i>B</i> are two positive definite <span>\\(n\\times n\\)</span> matrices.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 3-4","pages":"419 - 439"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular value inequalities with applications to norms and means of matrices\",\"authors\":\"Fuad Kittaneh,&nbsp;Hamid Reza Moradi,&nbsp;Mohammad Sababheh\",\"doi\":\"10.1007/s44146-024-00113-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we obtain some upper bounds for the singular values of sums of product of matrices. The obtained forms involve direct sums and mean-like matrix quantities. As applications, several bounds will be found in terms of the Aluthge transform, matrix means, matrix monotone functions and accretive-dissipative matrices. For example, we show that if <i>X</i> is an <span>\\\\(n\\\\times n\\\\)</span> accretive-dissipative matrix, then </p><div><div><span>$$\\\\begin{aligned} {{s}_{j}}\\\\left( X \\\\right) \\\\le \\\\left( 1+\\\\frac{\\\\sqrt{2}}{2} \\\\right) {{s}_{j}}\\\\left( \\\\Re X\\\\oplus \\\\Im X \\\\right) , \\\\end{aligned}$$</span></div></div><p>for <span>\\\\(j=1,2,\\\\ldots n\\\\)</span>, where <span>\\\\(s_j(\\\\cdot ), \\\\Re (\\\\cdot )\\\\)</span> and <span>\\\\(\\\\Im (\\\\cdot )\\\\)</span> denote the <span>\\\\(j-\\\\)</span>th singular value, the real part and the imaginary part, respectively. We also show that if <span>\\\\(\\\\sigma _f,\\\\sigma _g\\\\)</span> are two matrix means corresponding to the operator monotone functions <i>f</i>, <i>g</i>, then </p><div><div><span>$$\\\\begin{aligned} {{s}_{j}}\\\\left( A{{\\\\sigma }_{f}}B-A{{\\\\sigma }_{g}}B \\\\right) \\\\le \\\\left\\\\| A \\\\right\\\\| {{s}_{j}}\\\\left( f\\\\left( {{A}^{-\\\\frac{1}{2}}}B{{A}^{-\\\\frac{1}{2}}} \\\\right) \\\\oplus g\\\\left( {{A}^{-\\\\frac{1}{2}}}B{{A}^{-\\\\frac{1}{2}}} \\\\right) \\\\right) , \\\\end{aligned}$$</span></div></div><p>for <span>\\\\(j =1,2, \\\\ldots , n\\\\)</span>, where <i>A</i>, <i>B</i> are two positive definite <span>\\\\(n\\\\times n\\\\)</span> matrices.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"90 3-4\",\"pages\":\"419 - 439\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-024-00113-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00113-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了矩阵乘积和的奇异值的上界。所得到的形式包括直接和和类平均矩阵量。作为应用,我们将在Aluthge变换、矩阵均值、矩阵单调函数和累加-耗散矩阵中找到一些界限。例如,我们证明,如果X是\(n\times n\)加耗散矩阵,则\(j=1,2,\ldots n\)为$$\begin{aligned} {{s}_{j}}\left( X \right) \le \left( 1+\frac{\sqrt{2}}{2} \right) {{s}_{j}}\left( \Re X\oplus \Im X \right) , \end{aligned}$$,其中\(s_j(\cdot ), \Re (\cdot )\)和\(\Im (\cdot )\)分别表示\(j-\)奇异值,实部和虚部。我们还证明了如果\(\sigma _f,\sigma _g\)是两个矩阵意味着对应于算子单调函数f, g,那么$$\begin{aligned} {{s}_{j}}\left( A{{\sigma }_{f}}B-A{{\sigma }_{g}}B \right) \le \left\| A \right\| {{s}_{j}}\left( f\left( {{A}^{-\frac{1}{2}}}B{{A}^{-\frac{1}{2}}} \right) \oplus g\left( {{A}^{-\frac{1}{2}}}B{{A}^{-\frac{1}{2}}} \right) \right) , \end{aligned}$$对于\(j =1,2, \ldots , n\),其中A, B是两个正定的\(n\times n\)矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular value inequalities with applications to norms and means of matrices

In this paper, we obtain some upper bounds for the singular values of sums of product of matrices. The obtained forms involve direct sums and mean-like matrix quantities. As applications, several bounds will be found in terms of the Aluthge transform, matrix means, matrix monotone functions and accretive-dissipative matrices. For example, we show that if X is an \(n\times n\) accretive-dissipative matrix, then

$$\begin{aligned} {{s}_{j}}\left( X \right) \le \left( 1+\frac{\sqrt{2}}{2} \right) {{s}_{j}}\left( \Re X\oplus \Im X \right) , \end{aligned}$$

for \(j=1,2,\ldots n\), where \(s_j(\cdot ), \Re (\cdot )\) and \(\Im (\cdot )\) denote the \(j-\)th singular value, the real part and the imaginary part, respectively. We also show that if \(\sigma _f,\sigma _g\) are two matrix means corresponding to the operator monotone functions fg, then

$$\begin{aligned} {{s}_{j}}\left( A{{\sigma }_{f}}B-A{{\sigma }_{g}}B \right) \le \left\| A \right\| {{s}_{j}}\left( f\left( {{A}^{-\frac{1}{2}}}B{{A}^{-\frac{1}{2}}} \right) \oplus g\left( {{A}^{-\frac{1}{2}}}B{{A}^{-\frac{1}{2}}} \right) \right) , \end{aligned}$$

for \(j =1,2, \ldots , n\), where AB are two positive definite \(n\times n\) matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信