Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh
{"title":"奇异值不等式在矩阵规范和均值中的应用","authors":"Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh","doi":"10.1007/s44146-024-00113-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we obtain some upper bounds for the singular values of sums of product of matrices. The obtained forms involve direct sums and mean-like matrix quantities. As applications, several bounds will be found in terms of the Aluthge transform, matrix means, matrix monotone functions and accretive-dissipative matrices. For example, we show that if <i>X</i> is an <span>\\(n\\times n\\)</span> accretive-dissipative matrix, then </p><div><div><span>$$\\begin{aligned} {{s}_{j}}\\left( X \\right) \\le \\left( 1+\\frac{\\sqrt{2}}{2} \\right) {{s}_{j}}\\left( \\Re X\\oplus \\Im X \\right) , \\end{aligned}$$</span></div></div><p>for <span>\\(j=1,2,\\ldots n\\)</span>, where <span>\\(s_j(\\cdot ), \\Re (\\cdot )\\)</span> and <span>\\(\\Im (\\cdot )\\)</span> denote the <span>\\(j-\\)</span>th singular value, the real part and the imaginary part, respectively. We also show that if <span>\\(\\sigma _f,\\sigma _g\\)</span> are two matrix means corresponding to the operator monotone functions <i>f</i>, <i>g</i>, then </p><div><div><span>$$\\begin{aligned} {{s}_{j}}\\left( A{{\\sigma }_{f}}B-A{{\\sigma }_{g}}B \\right) \\le \\left\\| A \\right\\| {{s}_{j}}\\left( f\\left( {{A}^{-\\frac{1}{2}}}B{{A}^{-\\frac{1}{2}}} \\right) \\oplus g\\left( {{A}^{-\\frac{1}{2}}}B{{A}^{-\\frac{1}{2}}} \\right) \\right) , \\end{aligned}$$</span></div></div><p>for <span>\\(j =1,2, \\ldots , n\\)</span>, where <i>A</i>, <i>B</i> are two positive definite <span>\\(n\\times n\\)</span> matrices.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 3-4","pages":"419 - 439"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular value inequalities with applications to norms and means of matrices\",\"authors\":\"Fuad Kittaneh, Hamid Reza Moradi, Mohammad Sababheh\",\"doi\":\"10.1007/s44146-024-00113-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we obtain some upper bounds for the singular values of sums of product of matrices. The obtained forms involve direct sums and mean-like matrix quantities. As applications, several bounds will be found in terms of the Aluthge transform, matrix means, matrix monotone functions and accretive-dissipative matrices. For example, we show that if <i>X</i> is an <span>\\\\(n\\\\times n\\\\)</span> accretive-dissipative matrix, then </p><div><div><span>$$\\\\begin{aligned} {{s}_{j}}\\\\left( X \\\\right) \\\\le \\\\left( 1+\\\\frac{\\\\sqrt{2}}{2} \\\\right) {{s}_{j}}\\\\left( \\\\Re X\\\\oplus \\\\Im X \\\\right) , \\\\end{aligned}$$</span></div></div><p>for <span>\\\\(j=1,2,\\\\ldots n\\\\)</span>, where <span>\\\\(s_j(\\\\cdot ), \\\\Re (\\\\cdot )\\\\)</span> and <span>\\\\(\\\\Im (\\\\cdot )\\\\)</span> denote the <span>\\\\(j-\\\\)</span>th singular value, the real part and the imaginary part, respectively. We also show that if <span>\\\\(\\\\sigma _f,\\\\sigma _g\\\\)</span> are two matrix means corresponding to the operator monotone functions <i>f</i>, <i>g</i>, then </p><div><div><span>$$\\\\begin{aligned} {{s}_{j}}\\\\left( A{{\\\\sigma }_{f}}B-A{{\\\\sigma }_{g}}B \\\\right) \\\\le \\\\left\\\\| A \\\\right\\\\| {{s}_{j}}\\\\left( f\\\\left( {{A}^{-\\\\frac{1}{2}}}B{{A}^{-\\\\frac{1}{2}}} \\\\right) \\\\oplus g\\\\left( {{A}^{-\\\\frac{1}{2}}}B{{A}^{-\\\\frac{1}{2}}} \\\\right) \\\\right) , \\\\end{aligned}$$</span></div></div><p>for <span>\\\\(j =1,2, \\\\ldots , n\\\\)</span>, where <i>A</i>, <i>B</i> are two positive definite <span>\\\\(n\\\\times n\\\\)</span> matrices.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"90 3-4\",\"pages\":\"419 - 439\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-024-00113-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00113-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Singular value inequalities with applications to norms and means of matrices
In this paper, we obtain some upper bounds for the singular values of sums of product of matrices. The obtained forms involve direct sums and mean-like matrix quantities. As applications, several bounds will be found in terms of the Aluthge transform, matrix means, matrix monotone functions and accretive-dissipative matrices. For example, we show that if X is an \(n\times n\) accretive-dissipative matrix, then
$$\begin{aligned} {{s}_{j}}\left( X \right) \le \left( 1+\frac{\sqrt{2}}{2} \right) {{s}_{j}}\left( \Re X\oplus \Im X \right) , \end{aligned}$$
for \(j=1,2,\ldots n\), where \(s_j(\cdot ), \Re (\cdot )\) and \(\Im (\cdot )\) denote the \(j-\)th singular value, the real part and the imaginary part, respectively. We also show that if \(\sigma _f,\sigma _g\) are two matrix means corresponding to the operator monotone functions f, g, then