论五边形图链的细谷和舒尔茨多项式

Q4 Mathematics
Mamoon Fattah Khalf, Habib Azanchiler, Nabeel E. Arif, Sara Eslameian
{"title":"论五边形图链的细谷和舒尔茨多项式","authors":"Mamoon Fattah Khalf, Habib Azanchiler, Nabeel E. Arif, Sara Eslameian","doi":"10.52783/anvi.v27.411","DOIUrl":null,"url":null,"abstract":"In order to connect a chain of vertices of rings of a pentagonal graph with a path of length one, we introduce in this work the concepts of Wiener, Schultz, and Modified Schultz indices, as well as Schultz, modified Schultz, and Hosoya polynomials. Along with changing the multiplicities of Schultz and Hosoya, some of Schultz's attributes are also presented.","PeriodicalId":40035,"journal":{"name":"Advances in Nonlinear Variational Inequalities","volume":"19 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Hosoya and Schultz Polynomials of Chain of Pentagonal Graph\",\"authors\":\"Mamoon Fattah Khalf, Habib Azanchiler, Nabeel E. Arif, Sara Eslameian\",\"doi\":\"10.52783/anvi.v27.411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to connect a chain of vertices of rings of a pentagonal graph with a path of length one, we introduce in this work the concepts of Wiener, Schultz, and Modified Schultz indices, as well as Schultz, modified Schultz, and Hosoya polynomials. Along with changing the multiplicities of Schultz and Hosoya, some of Schultz's attributes are also presented.\",\"PeriodicalId\":40035,\"journal\":{\"name\":\"Advances in Nonlinear Variational Inequalities\",\"volume\":\"19 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Variational Inequalities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/anvi.v27.411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Variational Inequalities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/anvi.v27.411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

为了用长度为 1 的路径连接五边形图环的顶点链,我们在本著作中引入了维纳指数、舒尔茨指数和修正舒尔茨指数的概念,以及舒尔茨多项式、修正舒尔茨多项式和细谷多项式的概念。在改变舒尔茨和细谷的乘数的同时,还介绍了舒尔茨的一些属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Hosoya and Schultz Polynomials of Chain of Pentagonal Graph
In order to connect a chain of vertices of rings of a pentagonal graph with a path of length one, we introduce in this work the concepts of Wiener, Schultz, and Modified Schultz indices, as well as Schultz, modified Schultz, and Hosoya polynomials. Along with changing the multiplicities of Schultz and Hosoya, some of Schultz's attributes are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信