{"title":"利用 Flutter 中的深度学习方法进行实时车辆图像分析","authors":"Aleksandr Shishkov, Stevanče Nikoloski","doi":"10.18690/um.feri.1.2024.7","DOIUrl":null,"url":null,"abstract":"V članku raziskujemo integracijo modela MobileNetV3 v ogrodju Flutter, osredotočajoč se na napredno klasifikacijo slik avtomobilov. Preučujemo večplasten pristop, ki vključuje uporabo raznolikih podatkovnih zbirk, fino prilagajanje modela ter njegovo brezhibno implementacijo v mobilno aplikacijo. S poudarkom na izboljšanju uporabniške izkušnje smo ustvarili tri specializirane modele z visoko stopnjo natančnosti (97%), ki prepoznajo ustrezne slike, klasificirajo tip slike (vozilo, armaturna plošča ali dokument) ter določajo stran avtomobila (spredaj, levo, desno, zadaj). Rezultati kažejo izjemno hitrost in odzivnost aplikacije, pri čemer MobileNetV3 zagotavlja natančno klasifikacijo v le 60 ms, kar prispeva k izjemni učinkovitosti celotnega sistema.","PeriodicalId":517885,"journal":{"name":"ROSUS 2024 - Računalniška obdelava slik in njena uporaba v Sloveniji 2024: Zbornik 18. strokovne konference","volume":"10 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sprotna analiza slik vozil z metodami globokega učenja v ogrodju Flutter\",\"authors\":\"Aleksandr Shishkov, Stevanče Nikoloski\",\"doi\":\"10.18690/um.feri.1.2024.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"V članku raziskujemo integracijo modela MobileNetV3 v ogrodju Flutter, osredotočajoč se na napredno klasifikacijo slik avtomobilov. Preučujemo večplasten pristop, ki vključuje uporabo raznolikih podatkovnih zbirk, fino prilagajanje modela ter njegovo brezhibno implementacijo v mobilno aplikacijo. S poudarkom na izboljšanju uporabniške izkušnje smo ustvarili tri specializirane modele z visoko stopnjo natančnosti (97%), ki prepoznajo ustrezne slike, klasificirajo tip slike (vozilo, armaturna plošča ali dokument) ter določajo stran avtomobila (spredaj, levo, desno, zadaj). Rezultati kažejo izjemno hitrost in odzivnost aplikacije, pri čemer MobileNetV3 zagotavlja natančno klasifikacijo v le 60 ms, kar prispeva k izjemni učinkovitosti celotnega sistema.\",\"PeriodicalId\":517885,\"journal\":{\"name\":\"ROSUS 2024 - Računalniška obdelava slik in njena uporaba v Sloveniji 2024: Zbornik 18. strokovne konference\",\"volume\":\"10 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ROSUS 2024 - Računalniška obdelava slik in njena uporaba v Sloveniji 2024: Zbornik 18. strokovne konference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18690/um.feri.1.2024.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROSUS 2024 - Računalniška obdelava slik in njena uporaba v Sloveniji 2024: Zbornik 18. strokovne konference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18690/um.feri.1.2024.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sprotna analiza slik vozil z metodami globokega učenja v ogrodju Flutter
V članku raziskujemo integracijo modela MobileNetV3 v ogrodju Flutter, osredotočajoč se na napredno klasifikacijo slik avtomobilov. Preučujemo večplasten pristop, ki vključuje uporabo raznolikih podatkovnih zbirk, fino prilagajanje modela ter njegovo brezhibno implementacijo v mobilno aplikacijo. S poudarkom na izboljšanju uporabniške izkušnje smo ustvarili tri specializirane modele z visoko stopnjo natančnosti (97%), ki prepoznajo ustrezne slike, klasificirajo tip slike (vozilo, armaturna plošča ali dokument) ter določajo stran avtomobila (spredaj, levo, desno, zadaj). Rezultati kažejo izjemno hitrost in odzivnost aplikacije, pri čemer MobileNetV3 zagotavlja natančno klasifikacijo v le 60 ms, kar prispeva k izjemni učinkovitosti celotnega sistema.