关于保留仿射函数的康托洛维奇型算子的说明

Didem Aydın Arı, Gizem Uğur Yılmaz
{"title":"关于保留仿射函数的康托洛维奇型算子的说明","authors":"Didem Aydın Arı, Gizem Uğur Yılmaz","doi":"10.33401/fujma.1424382","DOIUrl":null,"url":null,"abstract":"The authors present an integral widening of operators which preserve affine functions. Influenced by the operators which preserve affine functions, we define the integral extension of these operators. We give quantitative type theorem using weighted modulus of continuity. Withal quantitative Voronovskaya theorem is aquired by classical modulus of continuity. When the moments of the operator are known, convergence results with the moments obtained for the Kantorovich form of the same operator is given.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"28 52","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note On Kantorovich Type Operators Which Preserve Affine Functions\",\"authors\":\"Didem Aydın Arı, Gizem Uğur Yılmaz\",\"doi\":\"10.33401/fujma.1424382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present an integral widening of operators which preserve affine functions. Influenced by the operators which preserve affine functions, we define the integral extension of these operators. We give quantitative type theorem using weighted modulus of continuity. Withal quantitative Voronovskaya theorem is aquired by classical modulus of continuity. When the moments of the operator are known, convergence results with the moments obtained for the Kantorovich form of the same operator is given.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"28 52\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.1424382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.1424382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者提出了保留仿射函数的算子的积分广延。受保留仿射函数的算子的影响,我们定义了这些算子的积分扩展。我们利用加权连续性模数给出了定量类型定理。通过经典连续性模数,我们可以得到定量的沃罗诺夫斯卡娅定理。当已知算子的矩时,我们给出了与同一算子的康托洛维奇形式的矩的收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note On Kantorovich Type Operators Which Preserve Affine Functions
The authors present an integral widening of operators which preserve affine functions. Influenced by the operators which preserve affine functions, we define the integral extension of these operators. We give quantitative type theorem using weighted modulus of continuity. Withal quantitative Voronovskaya theorem is aquired by classical modulus of continuity. When the moments of the operator are known, convergence results with the moments obtained for the Kantorovich form of the same operator is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信