{"title":"计算流体动力学 (CFD) 在化学工程中的变革作用","authors":"Lodh Bibhab Kumar","doi":"10.17352/ojc.000033","DOIUrl":null,"url":null,"abstract":"Chemical engineering is a discipline intrinsically linked to fluid behavior. From reaction kinetics to reactor design, understanding how fluids flow, mix, and transfer heat is paramount. Traditionally, this relied heavily on experimentation, a time-consuming and resource-intensive process. The emergence of Computational Fluid Dynamics (CFD) has revolutionized the field, offering a powerful in-silico approach to analyze fluid dynamics in chemical engineering processes. This review paper explores the transformative role of CFD, examining its impact on various aspects of chemical engineering, including reactor design, optimization, process intensification, scale-up, and safety analysis. The paper also discusses the challenges associated with CFD simulations, ongoing advancements in the field, and potential future directions.","PeriodicalId":517505,"journal":{"name":"Open Journal of Chemistry","volume":"105 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The transformative role of Computational Fluid Dynamics (CFD) in chemical engineering\",\"authors\":\"Lodh Bibhab Kumar\",\"doi\":\"10.17352/ojc.000033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical engineering is a discipline intrinsically linked to fluid behavior. From reaction kinetics to reactor design, understanding how fluids flow, mix, and transfer heat is paramount. Traditionally, this relied heavily on experimentation, a time-consuming and resource-intensive process. The emergence of Computational Fluid Dynamics (CFD) has revolutionized the field, offering a powerful in-silico approach to analyze fluid dynamics in chemical engineering processes. This review paper explores the transformative role of CFD, examining its impact on various aspects of chemical engineering, including reactor design, optimization, process intensification, scale-up, and safety analysis. The paper also discusses the challenges associated with CFD simulations, ongoing advancements in the field, and potential future directions.\",\"PeriodicalId\":517505,\"journal\":{\"name\":\"Open Journal of Chemistry\",\"volume\":\"105 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17352/ojc.000033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17352/ojc.000033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The transformative role of Computational Fluid Dynamics (CFD) in chemical engineering
Chemical engineering is a discipline intrinsically linked to fluid behavior. From reaction kinetics to reactor design, understanding how fluids flow, mix, and transfer heat is paramount. Traditionally, this relied heavily on experimentation, a time-consuming and resource-intensive process. The emergence of Computational Fluid Dynamics (CFD) has revolutionized the field, offering a powerful in-silico approach to analyze fluid dynamics in chemical engineering processes. This review paper explores the transformative role of CFD, examining its impact on various aspects of chemical engineering, including reactor design, optimization, process intensification, scale-up, and safety analysis. The paper also discusses the challenges associated with CFD simulations, ongoing advancements in the field, and potential future directions.