基于模型的混合变分水平集方法应用于肺癌检测

Wang Jing, Liew Siau Chuin, A. Aziz
{"title":"基于模型的混合变分水平集方法应用于肺癌检测","authors":"Wang Jing, Liew Siau Chuin, A. Aziz","doi":"10.32629/jai.v7i5.921","DOIUrl":null,"url":null,"abstract":"The precise segmentation of lung lesions in computed tomography (CT) scans holds paramount importance for lung cancer research, offering invaluable information for clinical diagnosis and treatment. Nevertheless, achieving efficient detection and segmentation with acceptable accuracy proves to be challenging due to the heterogeneity of lung nodules. This paper presents a novel model-based hybrid variational level set method (VLSM) tailored for lung cancer detection. Initially, the VLSM introduces a scale-adaptive fast level-set image segmentation algorithm to address the inefficiency of low gray scale image segmentation. This algorithm simplifies the (Local Intensity Clustering) LIC model and devises a new energy functional based on the region-based pressure function. The improved multi-scale mean filter approximates the image’s offset field, effectively reducing gray-scale inhomogeneity and eliminating the influence of scale parameter selection on segmentation. Experimental results demonstrate that the proposed VLSM algorithm accurately segments images with both gray-scale inhomogeneity and noise, showcasing robustness against various noise types. This enhanced algorithm proves advantageous for addressing real-world image segmentation problems and nodules detection challenges.","PeriodicalId":508223,"journal":{"name":"Journal of Autonomous Intelligence","volume":"95 8s2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based hybrid variational level set method applied to lung cancer detection\",\"authors\":\"Wang Jing, Liew Siau Chuin, A. Aziz\",\"doi\":\"10.32629/jai.v7i5.921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise segmentation of lung lesions in computed tomography (CT) scans holds paramount importance for lung cancer research, offering invaluable information for clinical diagnosis and treatment. Nevertheless, achieving efficient detection and segmentation with acceptable accuracy proves to be challenging due to the heterogeneity of lung nodules. This paper presents a novel model-based hybrid variational level set method (VLSM) tailored for lung cancer detection. Initially, the VLSM introduces a scale-adaptive fast level-set image segmentation algorithm to address the inefficiency of low gray scale image segmentation. This algorithm simplifies the (Local Intensity Clustering) LIC model and devises a new energy functional based on the region-based pressure function. The improved multi-scale mean filter approximates the image’s offset field, effectively reducing gray-scale inhomogeneity and eliminating the influence of scale parameter selection on segmentation. Experimental results demonstrate that the proposed VLSM algorithm accurately segments images with both gray-scale inhomogeneity and noise, showcasing robustness against various noise types. This enhanced algorithm proves advantageous for addressing real-world image segmentation problems and nodules detection challenges.\",\"PeriodicalId\":508223,\"journal\":{\"name\":\"Journal of Autonomous Intelligence\",\"volume\":\"95 8s2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Autonomous Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32629/jai.v7i5.921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i5.921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机断层扫描(CT)中肺部病变的精确分割对肺癌研究至关重要,可为临床诊断和治疗提供宝贵的信息。然而,由于肺部结节的异质性,实现高效检测和精确分割具有挑战性。本文提出了一种为肺癌检测量身定制的基于模型的新型混合变异水平集方法(VLSM)。首先,VLSM 引入了规模自适应快速水平集图像分割算法,以解决低灰度图像分割效率低下的问题。该算法简化了(局部强度聚类)LIC 模型,并根据基于区域的压力函数设计了一种新的能量函数。改进后的多尺度均值滤波器逼近了图像的偏移场,有效降低了灰度不均匀性,消除了尺度参数选择对分割的影响。实验结果表明,所提出的 VLSM 算法能准确地分割灰度不均匀性和噪声的图像,对各种类型的噪声具有很强的鲁棒性。事实证明,这种增强型算法有利于解决现实世界中的图像分割问题和结节检测难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-based hybrid variational level set method applied to lung cancer detection
The precise segmentation of lung lesions in computed tomography (CT) scans holds paramount importance for lung cancer research, offering invaluable information for clinical diagnosis and treatment. Nevertheless, achieving efficient detection and segmentation with acceptable accuracy proves to be challenging due to the heterogeneity of lung nodules. This paper presents a novel model-based hybrid variational level set method (VLSM) tailored for lung cancer detection. Initially, the VLSM introduces a scale-adaptive fast level-set image segmentation algorithm to address the inefficiency of low gray scale image segmentation. This algorithm simplifies the (Local Intensity Clustering) LIC model and devises a new energy functional based on the region-based pressure function. The improved multi-scale mean filter approximates the image’s offset field, effectively reducing gray-scale inhomogeneity and eliminating the influence of scale parameter selection on segmentation. Experimental results demonstrate that the proposed VLSM algorithm accurately segments images with both gray-scale inhomogeneity and noise, showcasing robustness against various noise types. This enhanced algorithm proves advantageous for addressing real-world image segmentation problems and nodules detection challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信