Mukhriddin Arabboev, Shohruh Begmatov, Mokhirjon Rikhsivoev, K. Nosirov, Saidakmal Saydiakbarov
{"title":"全面回顾图像超分辨率指标:经典方法和基于人工智能的方法","authors":"Mukhriddin Arabboev, Shohruh Begmatov, Mokhirjon Rikhsivoev, K. Nosirov, Saidakmal Saydiakbarov","doi":"10.21014/actaimeko.v13i1.1679","DOIUrl":null,"url":null,"abstract":"Image super-resolution is a process that aims to enhance the quality and resolution of images using various techniques and algorithms. The process aims to reconstruct a high-resolution image from a given low-resolution input. To determine the effectiveness of these algorithms, it's crucial to evaluate those using specific metrics. In this paper, we take a closer look at the most commonly used image super-resolution metrics, including classical approaches like Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM). We also discuss advanced metrics like Learned Perceptual Image Patch Similarity (LPIPS), Fréchet Inception Distance (FID), Inception Score (IS), and Multi-Scale Structural Similarity Index (MS-SSIM). Furthermore, we provide an overview of classical and AI-based super-resolution techniques and methods. Finally, we discuss potential challenges and future research directions in the field and present our experimental results by applying image super-resolution metrics. In the result and discussion section, we have practiced some given metrics and proposed our image super-resolution results.","PeriodicalId":37987,"journal":{"name":"Acta IMEKO","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"comprehensive review of image super-resolution metrics: classical and AI-based approaches\",\"authors\":\"Mukhriddin Arabboev, Shohruh Begmatov, Mokhirjon Rikhsivoev, K. Nosirov, Saidakmal Saydiakbarov\",\"doi\":\"10.21014/actaimeko.v13i1.1679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image super-resolution is a process that aims to enhance the quality and resolution of images using various techniques and algorithms. The process aims to reconstruct a high-resolution image from a given low-resolution input. To determine the effectiveness of these algorithms, it's crucial to evaluate those using specific metrics. In this paper, we take a closer look at the most commonly used image super-resolution metrics, including classical approaches like Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM). We also discuss advanced metrics like Learned Perceptual Image Patch Similarity (LPIPS), Fréchet Inception Distance (FID), Inception Score (IS), and Multi-Scale Structural Similarity Index (MS-SSIM). Furthermore, we provide an overview of classical and AI-based super-resolution techniques and methods. Finally, we discuss potential challenges and future research directions in the field and present our experimental results by applying image super-resolution metrics. In the result and discussion section, we have practiced some given metrics and proposed our image super-resolution results.\",\"PeriodicalId\":37987,\"journal\":{\"name\":\"Acta IMEKO\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta IMEKO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21014/actaimeko.v13i1.1679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta IMEKO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21014/actaimeko.v13i1.1679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
comprehensive review of image super-resolution metrics: classical and AI-based approaches
Image super-resolution is a process that aims to enhance the quality and resolution of images using various techniques and algorithms. The process aims to reconstruct a high-resolution image from a given low-resolution input. To determine the effectiveness of these algorithms, it's crucial to evaluate those using specific metrics. In this paper, we take a closer look at the most commonly used image super-resolution metrics, including classical approaches like Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM). We also discuss advanced metrics like Learned Perceptual Image Patch Similarity (LPIPS), Fréchet Inception Distance (FID), Inception Score (IS), and Multi-Scale Structural Similarity Index (MS-SSIM). Furthermore, we provide an overview of classical and AI-based super-resolution techniques and methods. Finally, we discuss potential challenges and future research directions in the field and present our experimental results by applying image super-resolution metrics. In the result and discussion section, we have practiced some given metrics and proposed our image super-resolution results.
期刊介绍:
The main goal of this journal is the enhancement of academic activities of IMEKO and a wider dissemination of scientific output from IMEKO TC events. High-quality papers presented at IMEKO conferences, workshops or congresses are seleted by the event organizers and the authors are invited to publish an enhanced version of their paper in this journal. The journal also publishes scientific articles on measurement and instrumentation not related to an IMEKO event.